Biology Reference
In-Depth Information
Sheldahl, L, Park, M., Malbon, C. and Moon, R. 1999. Protein kinase C is differentially
stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr. Biol.
9: 695-698.
Shih, J. and Keller, R., 1992a. Cell motility driving mediolateral intercalation in explants of
Xenopus laevis. Development 116: 901-914.
Shih, J. and Keller, R., 1992b. Patterns of cell motility in the organizer and dorsal
mesoderm of Xenopus. Development 116: 915-930.
Shook, D. R., Majer, C. and Keller, R., 2002. Urodeles remove mesoderm from the super-
ficial layer by subduction through a bilateral primitive streak. Develop. Biol. 248: 220-239.
Sokol, S. Y., 1996. Analysis of Dishevelled signalling pathways during Xenopus
development. Curr. Biol. 6: 1456-1467.
Tada, M. and Smith, J. C., 2000. Xwnt 11 is a target of Xenopus Brachyury: regulation of
gastrulation movements via dishevelled, but not through the canonical Wnt pathway.
Development 127: 2227-2238.
Topczewski, J., Sepich, D., Myers, D., Walker, C., et al., 2001. The zebrafish glypican
knypek controls cell polarity during gastrulation movements of convergent extension.
Devel. Cell 1: 251-264.
Trinkaus, J. P., 1976. On the mechanism of cell movements. In The Cell Surface in Animal
Embryogenesis and Development (eds Poste, G. and Nicolson, G. L.). New York:
Elsevier/North-Holland Biomedical Press, pp. 225-329.
Trinkaus, J. P., 1998. Gradient in convergent cell movement during Fundulus gastrulation.
J. Exp. Zool. 281: 328-335.
Trinkaus, J. P., Trinkaus, M. and Fink, R., 1992. On the convergent cell movements of
gastrulation in Fundulus. J. Exp. Zool. 261: 40-61.
Vogt, W., 1929. Gestaltanalyse am Amphibienkein mit o¨ rtlicher Vitalfa¨ rbung. II.Teil.
Gastrulation und Mesodermbildung bei Urodelen und Anuren. Wilhelm Roux Arch.
EntwMech. Org. 120: 384-706.
Wallingford, J. B. and Harland, R. M., 2001. Xenopus Dishevelled signaling regulates both
neural and mesodermal convergent extension: parallel forces elongating the body axis.
Development 128: 2581-2592.
Wallingford, J. B., Rowning, B. A., Vogeli, K. M., Rothbacher, U., et al., 2000.
Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405: 81.
Wallingford, J. B., Fraser, S. E. and Harland, R., 2002. Convergent extension: the
molecular control of polarized cell movement during embryonic development. Develop.
Cell 2: 695-706.
Wei, Y. and Mikawa, T., 2000. Formation of the avian primitive streak from spatially
restricted blastoderm: evidence for polarized cell division in the elongating streak.
Development 127, 87-96.
Wilson, P. and Keller, R., 1991. Cell rearrangement during gastrulation of Xenopus: Direct
observation of cultured explants. Development 112: 289-300.
Wilson, P., Oster, G. and Keller, R. E. 1989. Cell rearrangement and segmentation in
Xenopus: Direct observation of cultured explants. Development 105: 155-166.
Winklbauer, R. and Stoltz, C., 1995. Fibronectin fibril growth in the extracellular matrix of
the Xenopus embryo. J. Cell Sci. 108: 1575-1586.
Winklbauer, R., Medina, A., Swain, R. and Steinbeisser, H. 2001., Frizzled-7 signalling
controls tissue separation during Xenopus gastrulation. Nature 413: 856-860.
Yamamoto, A., Amacher, S., Kim, S., Geissert, D., et al., 1998. Zebrafish paraxial
protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula
mesoderm. Development 125: 3389-3397.
Zhong, Y., Brieher, W. and Gumbiner, B., 1999. Analysis of C-cadherin regulation during
tissue morphogenesis with an activating antibody. J. Cell Biol. 144: 351-359.
Search WWH ::




Custom Search