Biology Reference
In-Depth Information
Marsden, M. and DeSimone, D., 2001. Regulation of cell polarity, radial intercalation
and epiboly in Xenopus: novel roles for integrin and fibronectin. Development 128:
3635-3647.
Marsden, M. and Desimone, D., 2003. Integrin-ECM interactions regulate cadherin-
dependent cell adhesion and are required for convergent extension in Xenopus. Curr.
Biol. 13: 1182-1191.
Miyamoto, D. M. and Crowther, R. J., 1985. Formation of the notochord in living ascidian
embryos. J. Embryol. Exp. Morphol. 86: 1-17.
Mlodzik, M., 2002. Planar cell polarization: do the same mechanisms regulate Drosophila
tissue polarity and vertebrate gastrulation? Trends Genetics 18: 564-578.
Moore, S., 1992. Direct measurement of dynamic biomechanical properties of amphibian
embryonic tissues. Ph.D. Thesis, University of California, Berkeley, Berkeley, CA, USA.
Moore, S., Keller, R. and Koehl, M., 1995. The dorsal involuting marginal zone stiffens
anisotropically during its convergent extension in the gastrula of Xenopus laevis.
Development 121: 3131-3140.
Munro, E. M. and Odell, G. M., 2002a. Polarized basolateral cell motility underlies
invagination and convergent extension of the ascidian notochord. Development 129:
13-24.
Munro, E. M. and Odell, G., 2002b. Morphogenetic pattern formation during ascidian
notochord formation is regulative and highly robust. Development 129: 1-12.
Myers, D., Sepich, D. and Solnica-Krezel, L., 2002. Convergence and extension in
vertebrate gastrulae: cell movements according to or in search of identity? Trends
Genetics 18: 447-455.
Nakatsuji, N. and Johnson, K., 1982. Movement and guidance of migrating mesodermal
cells in Ambystoma maculatum gastrulae. J. Cell Sci. 56: 207-222.
Nakatsuji, N. and Johnson, K., 1983. Conditioning of a culture substratum by the
ectodermal layer promotes attachment and orientated locomotion by amphibian gastrula
mesodermal cells. J. Cell Sci. 59: 43-50.
Park, M. and Moon, R., 2002. The planar cell-polarity gene stbm regulates cell behaviour
and cell fate in vertebrate embryos. Nat. Cell Biol. 4: 20-25.
Ramos, J. W. and DeSimone, D. W., 1996. Xenopus embryonic cell adhesion to
fibronectin: position-specific activation of RGD/Synergy site-dependent migratory
behavior at gastrulation. J. Cell Biol. 134: 1-14.
Sausedo, R. A. and Schoenwolf, G. C., 1993. Cell behaviors underlying notochord
formation and extension in avian embryos: quantitative and immunocytochemical
studies. Anat. Rec. 237: 58-70.
Sausedo, R. A. and Schoenwolf, G. C., 1994. Quantitative analyses of cell behaviors under-
lying notochord formation and extension in mouse embryos. Anat. Rec. 239: 103-112.
Sausedo, R. A., Smith, J. L. and Schoenwolf, G. C., 1997. Role of nonrandomly orientated
cell division in shaping and bending of the neural plate. J. Comp. Neurol. 381: 473-488.
Schechtman, A. M., 1942. The mechanics of amphibian gastrulation. Univ. Calif. Publ.
Zool. 51: 1-39.
Schoenwolf, G. C. and Alvarez, I., 1989. Roles of neuroepithelial cell rearrangement and
division in shaping of the avian neural plate. Development 106: 427-439.
Schoenwolf, G. C., Garcia-Martinez, V. and Dias, M., 1992. Mesoderm movement and
fate during avian gastrulation and neurulation. Develop. Dyn. 193: 235-248.
Sepich, D., Myers, D., Short, R., Topczewski, J., et al., 2000. Role of the zebrafish trilobite
locus in gastrulation movements of convergence and extension. Genesis 27: 159-173.
Search WWH ::




Custom Search