Chemistry Reference
In-Depth Information
117. Y. Hangai, N. Yoshikawa, S. V. Dmitriev, M. Kohyama, and S. Tanaka, J. Jpn. Inst. Metals , 69 ,
194 (2005). Large Scale Atomistic Simulation of Cu/Al2O3 Interface via Quasicontinuum
Analysis.
118. Y. Hangai and N. Yoshikawa, Key Eng. Mat. , 261-263 , 729 (2004). QuasicontinuumModels
for Interface Multiscale Model.
119. F. L. Zeng and Y. Sun, Acta Mech. Solida Sinica , 19 , 283 (2006). Quasicontinuum Simulation
of Nanoindentation of Nickel Film.
120. V. B. Shenoy, R. Phillips, and E. B. Tadmor, J. Mech. Phys. Solids , 48 , 649 (2000). Nucleation
of Dislocations Beneath a Plane Strain Indenter.
121. F. Sansoz and V. Dupont, Appl. Phys. Lett. , 89 , 111901 (2006). Grain Growth Behavior at
Absolute Zero During Nanocrystalline Metal Indentation.
122. S. Hai and E. B. Tadmor, Acta Materialia , 51 , 117 (2003). Deformation Twinning at
Aluminum Crack Tips.
123. E. B. Tadmor, R. Miller, R. Phillips, and M. Ortiz, J. Mater. Res. , 14 , 2233 (1999).
Nanoindentation and Incipient Plasticity.
124. C. S. Shin, M. C. Fivel, D. Rodney, R. Phillips, V. B. Shenoy, and L. Dupuy, J. Phys. IV , 11 ,19
(2001). Formation and Strength of Dislocation Junctions in FCC Metals: A Study by
Dislocation Dynamics and Atomistic Simulations.
125. L. E. Shilkrot, W. A. Curtin, and R. E. Miller, J. Mech. Phys. Solids , 50 , 2085 (2002). A
Coupled Atomistic/Continuum Model of Defects in Solids.
126. L. E. Shilkrot, R. E. Miller, and W. A. Curtin, Phys. Rev. Lett. , 89 , 025501 (2002). Coupled
Atomistic and Discrete Dislocation Plasticity.
127. L. E. Shilkrot, R. E. Miller, andW. A. Curtin, J. Mech. Phys. Solids , 52 , 755 (2004). Multiscale
Plasticity Modeling: Coupled Atomistics and Discrete Dislocation Mechanics.
128. M. Dewald and W. A. Curtin, Model. Simul. Mater. Sci. Eng. , 14 , 497 (2006). Analysis and
Minimization of Dislocation Interactions with Atomistic/Continuum Interfaces.
129. B. Shiari, R. E. Miller, and W. A. Curtin, J. Eng. Mater. Technol. , 127 , 358 (2005). Coupled
Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature.
130. E. van der Giessen and A. Needleman, Model. Simul. Mater. Sci. Eng. , 3 , 689 (1995). Discrete
Dislocation Plasticity: A Simple Planar Model.
131. R. E. Miller, L. E. Shilkrot, and W. A. Curtin, Acta Materialia , 52 , 271 (2004). A Coupled
Atomistics and Discrete Dislocation Plasticity Simulation of Nanoindentation into Single
Crystal Thin Films.
132. M. P. Dewald and W. A. Curtin, Model. Simul. Mater. Sci. Eng. , 15 , S193 (2007). Multiscale
Modelling of Dislocation/Grain-Boundary Interactions: I. Edge Dislocations Impinging on
11 (1 1 3) Tilt Boundary in Al.
133. B. Liu, Y. Huang, H. Jiang, S. Qu, and K. C. Hwang, Comput. Meth. Appl. Mech. Eng. 193 ,
1849 (2004).The Atomic-Scale Finite Element Method.
134. B. Liu, H. Jiang, Y. Huang, S. Qu, M.-F. Yu, and K. C. Hwang, Phys. Rev. B , 72 , 035435
(2005). Atomic-Scale Finite Element Method in Multiscale Computation with Applications
to Carbon Nanotubes.
135. A. Y. T. Leung, X. Guo, X. Q. He, H. Jiang, and Y. Huang, J. Appl. Phys. , 99 , 124308 (2006).
Postbuckling of Carbon Nanotubes by Atomic-Scale Finite Element.
136. X. Guo, A. Y. T. Leung, H. Jiang, X. Q. He, and Y. Huang, J. Appl. Mech. , 74 , 347 (2007).
Critical Strain of Carbon Nanotubes: An Atomic-Scale Finite Element Study.
137. P. C. Gehlen, J. P. Hirth, R. G. Hoagland, andM. F. Kanninen, J. Appl. Phys. , 43 , 3921 (1972).
A New Representation of the Strain Field Associated with the Cube-Edge Dislocation in a
Model of a -Iron.
138. R. Pasianot, E. J. Savino, Z. Y. Xie, and D. Farkas, Mat. Res. Soc. Symp. Proc. , 291 , 85 (1993).
Simple Flexible Boundary Conditions for the Atomistic Simulation of Dislocation Core
Structure and Motion.
Search WWH ::




Custom Search