Chemistry Reference
In-Depth Information
96. M. Ortiz, A. M. Cuitino, J. Knap, and M. Koslowski, MRS Bull. 26 , 216 (2001). Mixed
Atomistic-Continuum Models of Material Behavior: The Art of Transcending Atomistics
and Informing Continua.
97. M. Ortiz and R. Phillips, Adv. Appl. Mech. , 36 , 1 (1999). Nanomechanics of Defects in
Solids.
98. D. Rodney, Proceedings of the NATO Conference Thermodynamics, Microstructures and
Plasticity, A. Finel, D. Maziere, and M. Veron, Eds., Kluwer, Dortrecht, 2003. Mixed
Atomistic/Continuum Methods: Static and Dynamic Quasicontinuum Methods.
99. V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, J. Mech. Phys.
Solids , 47 , 611 (1998). An Adaptive Methodology for Atomic Scale Mechanics: The
Quasicontinuum Method.
100. J. L. Ericksen, in Phase Transformations and Material Instabilities in Solids , M. Gurtin, Ed.,
Academic Press, New York, 1984, pp. 61-77, and references therein. The Cauchy and Born
Hypotheses for Crystals.
101. P. Steinmann, A. Elizondo, and R. Sunyk, Model. Simul. Mat. Sci. Eng. , 15 , S271 (2007).
Studies of Validity of the Cauchy-Born Rule by Direct Comparison of Continuum and
Atomistic Modeling.
102. J. Knap and M. Ortiz, J. Mech. Phys. Sol. , 49 , 1899 (2001). An Analysis of the Quasiconti-
nuum Method.
103. J. Knap and M. Ortiz, Phys. Rev. Lett. , 90 , 226102 (2003). Effect of Indenter-Radius Size on
Au(001) Nanoindentation.
104. J. Marian, J. Knap, and M. Ortiz, Phys. Rev. Lett. , 93 , 165503 (2004). Nanovoid Cavitation
by Dislocation Emission in Aluminum.
105. T. Shimokawa, J. J. Mortensen, J. Schiotz, and K. W. Jacobsen, Phys. Rev. B , 69 , 214104
(2004). Matching Conditions in the Quasicontinuum Method: Removal of the
Error Introduced at the Interface between the Coarse-Grained and Fully Atomistic
Region.
106. J. J. Mortensen, J. Schitz, and K. W. Jacobsen, Chall. Molec. Simul. , 4 , 119 (2002). The
Quasicontinuum Method Revisited.
107. W. E, J. F. Lu, and J. Z. Yang, Phys. Rev. B , 74 , 214115 (2006). Uniform Accuracy of the
Quasicontinuum Method.
108. D. J. Diestler, H. Zhou, R. Feng, and X. C. Zeng, J. Chem. Phys. , 125 , 064705 (2006). Hybrid
Atomistic-Coarse-Grained Treatment of Multiscale Processes in Heterogeneous Materials: A
Self-Consistent-Field Approach.
109. H. Zhou, R. Feng, D. J. Diestler, and X. C. Zeng, J. Chem. Phys. , 123 , 164109 (2005). Coarse-
GrainedFree-Energy-Functional Treatment ofQuasistaticMultiscale Processes inHeterogeneous
Materials.
110. Z. Tang, H. Zhao, G. Li, and N. R. Aluru, Phys. Rev. B , 74 , 064110 (2006). Finite-
Temperature Quasicontinuum Method for Multiscale Analysis of Silicon Nanostructures.
111. G. S. Smith, E. B. Tadmor, N. Bernstein, and E. Kaxiras, Acta Materialia , 49 , 4089 (2001).
Multiscale Simulations of Silicon Nanoindentation.
112. G. S. Smith, E. B. Tadmor, and E. Kaxiras, Phys. Rev. Lett. , 84 , 1260 (2000). Multiscale
Simulation of Loading and Electrical Resistance in Silicon Nanoindentation.
113. F. Sansoz and J. F. Molinari, Acta Materialia , 53 , 1931 (2005). Mechanical Behavior of Sigma
Tilt Grain Boundaries in Nanoscale Cu and Al: A Quasicontinuum Study.
114. F. Sansoz and J. F. Molinari, Thin Solid Films , 515 , 3158 (2007). Size and Microstructure
Effects on the Mechanical Behavior of FCC Bicrystals by Quasicontinuum Method.
115. D. B. Shan, L. Yuan, and B. Guo, Mat. Sci. Eng. A , 412 , 264 (2005). Multiscale Simulation of
Surface Step Effects on Nanoindentation.
116. R. A. Iglesias and E. P. M Leiva, Acta Materialia , 54 , 2655 (2006). Two-Grain Nanoindenta-
tion using the Quasicontinuum Method: Two-Dimensional Model Approach.
Search WWH ::




Custom Search