Chemistry Reference
In-Depth Information
233. I. Vasiliev, S. O ¨ ˘¨ t, and J. R. Chelikowsky, Phys. Rev. B , 65 , 115416 (2002). First-Principles
Density-Functional Calculations for Optical Spectra of Clusters and Nanocrystals.
234. H. Appel, E. K. U. Gross, and K. Burke, Phys. Rev. Lett. , 90 , 043005 (2003). Excitations in
Time-Dependent Density-Functional Theory.
235. H. Appel, E. K. U. Gross, and K. Burke, Int. J. Quantum Chem. , 106 , 2840 (2006). Double-
Pole Approximation in Time-Dependent Density Functional Theory.
236. A. Scherz, E. K. U. Gross, H. Appel, C. Sorg, K. Baberschke, H. Wende, and K. Burke, Phys.
Rev. Lett. , 95 , 253006 (2005). Measuring the Kernel of Time-Dependent Density Functional
Theory with X-ray Absorption Spectroscopy of 3d Transition Metals.
237. C. J. Umrigar and X. Gonze, in High Performance Computing and Its Application to the
Physical Sciences , Proceedings of the Mardi Gras 1993 Conference, D. A. Browne, Ed.,
World Scientific, Singapore, 1993, pp. 43-59. Comparison of Approximate and Exact
Density Functionals: A Quantum Monte Carlo Study.
238. F. Ham, Solid State Phys. , 1 , 127 (1955). The Quantum Defect Method.
239. M. J. Seaton, Mon. Not. R. Astron. Soc. , 118 , 504 (1958). The Quantum Defect Method.
240. J. D. Talman and W. F. Shadwick, Phys. Rev. A , 14 , 36 (1976). Optimized Effective Atomic
Central Potential.
241. A. G¨ rling, Phys. Rev. Lett. , 83 , 5459 (1999). New KS Method for Molecules Based on an
Exchange Charge Density Generating the Exact Local KS Exchange Potential.
242. S. Ivanov, S. Hirata, and R. J. Bartlett, Phys. Rev. Lett. , 83 , 5455 (1999). Exact Exchange
Treatment for Molecules in Finite-Basis-Set Kohn-Sham Theory.
243. M. Gruning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends, J. Chem. Phys. , 114 ,
652 (2001). Shape Corrections to Exchange-Correlation Potentials by Gradient-Regulated
Seamless Connection of Model Potentials for Inner and Outer Region.
244. M. van Faassen and K. Burke, J. Chem. Phys. , 124 , 094102 (2006). The QuantumDefect: The
True Measure of TDDFT Results for Atoms.
245. M. van Faassen, Int. J. Quantum Chem. , 106 , 3235 (2006). The Quantum Defect as a
Powerful Tool for Studying Rydberg Transition Energies from Density Functional Theory.
246. M. van Faassen and K. Burke, Chem. Phys. Lett. , 431 , 410 (2006). ANewChallenge for Time-
Dependent Density Functional Theory.
247. M. Stener, P. Decleva, and A. G¨ rling, J. Chem. Phys. , 114 , 7816 (2001). The Role of
Exchange and Correlation in Time-Dependent Density-Functional Theory for Photoioniza-
tion.
248. A. Kono and S. Hattori, Phys. Rev. A , 29 , 2981 (1984). Accurate Oscillator Strengths for
Neutral Helium.
249. J. A. R. Samson, Z. X. He, L. Yin, and G. N. Haddad, J. Phys. B , 27 , 887 (1994). Precision
Measurements of the Absolute Photoionization Cross Sections of He.
250. H. Friedrich, Theoretical Atomic Physics , 2 nd ed., Springer, New York 1998.
251. A. Wasserman and K. Burke, Phys. Rev. Lett. , 95 , 163006 (2005). Rydberg Transition
Frequencies from the Local Density Approximation.
252. M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions , Dover, New
York, 1972.
253. A. Wasserman, N. T. Maitra, and K. Burke, Phys. Rev. Lett. , 91 , 263001 (2003). Accurate
Rydberg Transitions from LDA Potentials.
254. A. Wasserman, N. T. Maitra, and K. Burke, J. Chem. Phys. , 122 , 133103 (2005). Electron-
Molecule Scattering from Time-Dependent Density Functional Theory.
255. A. Wasserman and K. Burke, Lect. Notes Phys. , 706 , 493 (2006). Scattering Amplitudes from
TDDFT.
256. R. K. Nesbet, Phys. Rev. A , 62 , 040701 (2000). Bound-Free Correlation in Electron Scattering
by Atoms and Molecules.
Search WWH ::




Custom Search