Chemistry Reference
In-Depth Information
213. O. Christiansen, H. Koch, and P. Jørgensen, Chem. Phys. Lett. , 243 , 409 (1995). The Second-
Order Approximate Coupled Cluster Singles and Doubles Model CC2.
214. C. H¨ ttig and F. Weigend, J. Chem. Phys. , 113 , 5154 (2000). CC2 Excitation Energy
Calculations on Large Molecules Using the Resolution of the Identity Approximation.
215. C. H¨ ttig and A. K¨ hn, J. Chem. Phys. , 117 , 6939 (2002). Transition Moments and Excited
State First-Order Properties in the Second-Order Coupled Cluster Model CC2 Using the
Resolution of the Identity Approximation.
216. M. Parac and S. Grimme, Chem. Phys. , 292 , 11 (2003). A TDDFT Study of the Lowest
Excitation Energies of Polycyclic Aromatic Hydrocarbons.
217. M. Gr¨ ning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends, J. Chem. Phys. , 116 ,
9591 (2002). On the Required Shape Corrections to the Local Density and Generalized
Gradient Approximations to the Kohn-Sham Potentials for Molecular Response Calcula-
tions of (Hyper)polarizabilities and Excitation Energies.
218. Q. Wu, P. W. Ayers, and W. Yang, J. Chem. Phys. , 119 , 2978 (2003). Density-Functional
Theory Calculations with Correct Long-Range Potentials.
219. F. Della Sala and A. G ¨ rling, Int. J. Quantum Chem. , 91 , 131 (2003). Excitation Energies of
Molecules by Time-Dependent Density Functional Theory Based on Effective Exact
Exchange Kohn-Sham Potentials.
220. A. J. Sadlej, Theor. Chim. Acta , 79 , 123 (1991). Medium-Size Polarized Basis-Sets for High-
Level-Correlated Calculations of Molecular Electric Properties. II. 2nd-Row Atoms—Si
through Cl.
221. T. Grabo, M. Petersilka, and E. K. U. Gross, J. Mol. Struct. THEOCHEM , 501 , 353 (2000).
Molecular Excitation Energies from Time-Dependent Density Functional Theory.
222. C. Jamorski, M. E. Casida, and D. R. Salahub, J. Chem. Phys. , 104 , 5134 (1996). Dynamic
Polarizabilities and Excitation Spectra from a Molecular Implementation of Time-
Dependent Density Functional Response Theory: N 2 as a Case Study.
223. M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. , 108 , 4439 (1998).
Molecular Excitation Energies to High-Lying Bound States from Time-Dependent Density-
Functional Response Theory: Characterization and Correction of the Time-Dependent Local
Density Approximation Ionization Threshold.
224. J. Oddershede, N. E. Gr¨ ner, and G. H. F. Diercksen, Chem. Phys. , 97 , 303 (1985).
Comparison between Equation of Motion and Polarization Propagator Calculations.
225. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV: Constants of
Diatomic Molecules , Van Nostrand Reinhold, New York, 1979.
226. A. Savin, C. J. Umrigar, and X. Gonze, Chem. Phys. Lett. , 288 , 391 (1998). Relationship of
Kohn-Sham Eigenvalues to Excitation Energies.
227. D. J. Tozer and N. C. Handy, J. Chem. Phys. , 108 , 2545 (1998). The Development of New
Exchange-Correlation Functionals.
228. Q. Wu and W. Yang, J. Chem. Phys. , 118 , 2498 (2003). A Direct Optimization Method for
Calculating Density Functionals and Exchange-Correlation Potentials from Electron Den-
sities.
229. M. E. Casida and D. R. Salahub, J. Chem. Phys. , 113 , 8918 (2000). Asymptotic Correction
Approach to Improving Approximate Exchange-Correlation Potentials: Time-Dependent
Density-Functional Theory Calculations of Molecular Excitation Spectra.
230. R. van Leeuwen and E. J. Baerends, Phys. Rev. A , 49 , 2421 (1994). Exchange-Correlation
Potential with Correct Asymptotic Behavior.
231. J. B. Krieger, Y. Li, andG. J. Iafrate, in Density Functional Theory , R.Dreizler andE. K. U.Gross,
Eds., NATO ASI Series B, Plenum, New York, 1995, pp. 191-216. Recent Developments in
Kohn-Sham Theory for Orbital Dependent Exchange-Correlation Energy Functionals.
232. M. Petersilka, E. K. U. Gross, and K. Burke, Int. J. Quantum Chem. , 80 , 534 (2000).
Excitation Energies from Time-Dependent Density Functional Theory Using Exact and
Approximate Functionals.
Search WWH ::




Custom Search