Chemistry Reference
In-Depth Information
17. F. Furche, Ph.D. thesis, Universit ¨ t Karlsruhe, 2002. Dichtefunktionalmethoden f ¨ r Elektro-
nisch Angeregte Molek ¨ le. Theorie, Implementierung und Anwendung.
18. K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs, Theor. Chem. Acc. , 97 , 119 (1997).
Auxiliary Basis Sets for Main Row Atoms and Transition Metals and Their Use to
Approximate Coulomb Potentials.
19. H. Goto, N. Harada, J. Crassous, and F. Diederich, J. Chem. Soc. , Perkin Trans. , 2 , 1719
(1998). Absolute Configuration of Chiral Fullerenes and Covalent Derivatives from Their
Calculated Circular Dichroism Spectra.
20. B. J. Coe, J. L. Harries, M. Helliwell, L. A. Jones, I. Asselberghs, K. Clays, B. S. Brunschwig, J.
A. Harris, J. Garin, and J. Orduna, J. Am. Chem. Soc. , 128 , 12192 (2006). Pentacyanoiron
(II) as an Electron Donor Group for Nonlinear Optics: Medium-Responsive Properties and
Comparisons with Related Pentaammineruthenium(II) Complexes.
21. C. H. Yang, W. L. Su, K. H. Fang, S. P. Wang, and I. W. Sun, Organometallics , 25 , 4514
(2006). Studies of the 5 0 -Substituted Phenylisoquinoline-Based Iridium Complexes Using
Density Functional Theory.
22. A. Vargas, M. Zerara, E. Krausz, A. Hauser, and L. M. L. Daku, J. Chem. Theory Comput. , 2 ,
1342 (2006). Density-Functional Theory Investigation of the Geometric, Energetic, and
Optical Properties of the Cobalt(II)tris(2,2 0 -bipyridine) Complex in the High-Spin and the
Jahn-Teller Active Low-Spin States.
23. A. Sakamoto, A. Hirooka, K. Namiki, M. Kurihara, M. Murata, M. Sugimoto, and H.
Nishihara, Inorg. Chem. , 44 , 7547 (2005). Photon-, Electron-, and Proton-Induced
Isomerization Behavior of Ferrocenylazobenzenes.
24. S. R. Stoyanov, J. M. Villegas, A. J. Cruz, L. L. Lockyear, J. H. Reibenspies, and D. P. Rillema,
J. Chem. Theory Comput. , 1 , 95 (2005). Computational and Spectroscopic Studies of Re(I)
Bipyridyl Complexes Containing 2,6-Dimethylphenylisocyanide (CNx) Ligand.
25. F. Gutierrez, C. Rabbe, R. Poteau, and J. P. Daudey, J. Phys. Chem. A , 109 , 4325 (2005).
Theoretical Study of Ln(III) Complexes with Polyaza-aromatic Ligands: Geometries of
½
Complexes and Successes and Failures of TD-DFT.
26. J. Neugebauer, E. J. Baerends, M. Nooijen, and J. Autschbach, J. Chem. Phys. , 122 , 234305
(2005). Importance of Vibronic Effects on the Circular Dichroism Spectrum of Dimethy-
loxirane.
27. E. Lanthier, C. Reber, and T. Carrington, Chem. Phys. , 329 , 90 (2006). Vibronic Coupling in
Square Planar Complexes of Palladium(II) and Platinum(II).
28. G. Fronzoni, R. Francesco, M. Stener, and M. Causa, J. Phys. Chem. B , 110 , 9899 (2006).
X-ray Absorption Spectroscopy of Titanium Oxide by Time Dependent Density Functional
Calculations.
29. W. Hieringer and E. J. Baerends, J. Phys. Chem. A , 110 , 1014 (2006). First Hyperpolarizability
of a Sesquifulvalene Transition Metal Complex by Time-Dependent Density-Functional
Theory.
30. N. G. Park, G. C. Choi, J. E. Lee, and Y. S. Kim, Current Appl. Phys. , 5 , 79 (2005). Theoretical
Studies of Cyclometalated Phenylpyrazol Ir(III) Complex Using Density Functional Theory.
31. J. M. Villegas, S. R. Stoyanov, W. Huang, L. L. Lockyear, J. H. Reibenspies, and D. P. Rillema,
Inorg. Chem. , 43 , 6383 (2004). Synthesis, Characterization, and Photochemical and
Computational Investigations of Ru(II) Heterocyclic Complexes Containing 2,6-Dimethyl-
phenylisocyanide (CNx) Ligand.
32. B. J. Coe, J. A. Harris, B. S. Brunschwig, J. Garin, J. Orduna, S. J. Coles, andM. B. Hursthouse,
J. Am. Chem. Soc. , 126 , 10418 (2004). Contrasting Linear and Quadratic Nonlinear Optical
Behavior of Dipolar Pyridinium Chromophores with 4-(Dimethylamino)Phenyl or Ruthe-
nium(II) Ammine Electron Donor Groups.
33. S. R. Stoyanov, J. M. Villegas, and D. P. Rillema, Inorg. Chem. Comm. , 7 , 838 (2004). The
Charge Transfer Band Solvent-Dependence of [Ru(bpy)(2)(CNx)Cl](þ) CNx ¼ 2,6-
Dimethylphenylisocyanide: A Polarizable Continuum Model/Time-Dependent Density
Functional Theory Study.
LnL
ð
H 2 O
Þð
n
Þ
Search WWH ::




Custom Search