Chemistry Reference
In-Depth Information
too inaccurate for modern needs. Although many alternatives for electronic
excitations, such as GW, are becoming computationally feasible for interesting
systems, we believe DFT, and TDDFT, should dominate for a few decades yet.
ACKNOWLEDGMENTS
We thank Michael Vitarelli for his early work on the review and Meta van Faassen, Max
Koentopp, and Roberto Car for providing figures. K.B. gratefully acknowledges support of the
U.S. Department of Energy, under grant number DE-FG02-01ER45928, and the NSF, under grant
CHE-0355405. This work was supported, in part, by the Center for Functional Nanostructures
(CFN) of the Deutsche Forschungsgemeinschaft (DFG) within project C3.9, the EXC!TiNG
Research and Training Network of the European Union and the NANOQUANTA Network of
Excellence.
REFERENCES
1. P. Hohenberg and W. Kohn, Phys. Rev. , 136 , B 864 (1964). Inhomogeneous Electron Gas.
2. W. Kohn and L. J. Sham, Phys. Rev. , 140 , A 1133 (1965). Self-Consistent Equations Including
Exchange and Correlation Effects.
3. R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum
Many-Body Problem , Springer, Berlin, 1990.
4. M. Levy, Phys. Rev. A , 26 , 1200 (1982). Electron Densities in Search of Hamiltonians.
5. A. D. Becke, Phys. Rev. A , 38 , 3098 (1988). Density-Functional Exchange-Energy Approxi-
mation with Correct Asymptotic Behavior.
6. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B , 37 , 785 (1988). Development of the Colle-
Salvetti Correlation-Energy Formula into a Functional of the Electron Density.
7. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. , 77 , 3865 (1996). Generalized
Gradient Approximation Made Simple. [Erratum: Phys. Rev. Lett. , 78 , 1396 (1997).]
8. A. D. Becke, J. Chem. Phys. , 98 , 5648 (1993). Density-Functional Thermochemistry. III. The
Role of Exact Exchange.
9. F. Furche and J. P. Perdew, J. Chem. Phys. , 124 , 044103 (2006). The Performance of Semi-
Local and Hybrid Density Functional in 3d Transition Metal Chemistry.
10. See www.turbomole.com.
11. M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys. Chem. , 55 , 427 (2004). Time-
Dependent Density-Functional Theory.
12. F. Furche and K. Burke, in Annual Reports in Computational Chemistry, Vol. 1 , D. Spellmeyer,
Ed., Elsevier, Amsterdam, 2005, pp. 19-30. Time-Dependent Density Functional Theory in
Quantum Chemistry.
13. N. T. Maitra, K. Burke, H. Appel, E. K. U. Gross, and R. van Leeuwen, in Reviews in Modern
Quantum Chemistry: A Celebration of the Contributions of R. G. Parr , K. D. Sen, Ed.,
World Scientific, Singapore 2001. Ten Topical Questions in Time-Dependent Density
Functional Theory.
14. K. Burke and E. K. U. Gross, in Density Functionals: Theory and Applications , D. Joubert, Ed.,
Springer, Berlin, 1998. A Guided Tour of Time-Dependent Density Functional Theory.
15. E. K. U. Gross, J. F. Dobson, and M. Petersilka, Topics in Current Chemisty , 181 , 81 (1996).
Density Functional Theory of Time-Dependent Phenomena.
16. E. Runge and E. K. U. Gross, Phys. Rev. Lett. , 52 , 997 (1984). Density-Functional Theory for
Time-Dependent Systems.
Search WWH ::




Custom Search