Biomedical Engineering Reference
In-Depth Information
[56]
Abraham, R.T., Cell cycle checkpoint signaling through the ATM and ATR kinases,
Genes Dev., 15, 2177, 2001.
[57]
Hur, G.M., Lewis, J., Yang, Q. et al . , The death domain kinase RIP has an essential
role in DNA damage-induced NF-κB activation, Genes Dev., 17, 873, 2003.
[58]
Tinel, A. and Tschopp, J., The PIDDosome, a protein complex implicated in activation
of caspase-2 in response to genotoxic stress, Science, 304, 843, 2004.
[59]
Bartkova, J., Horejsi, Z., Koed, K. et al . , DNA damage response as a candidate anti-
cancer barrier in early human tumorigenesis, Nature, 434, 864, 2005.
[60]
Gorgoulis, V.G., Vassiliou, L.V., Karakaidos, P. et al . , Activation of the DNA damage
checkpoint and genomic instability in human precancerous lesions, Nature, 434, 907,
2005.
[61]
Devary, Y., Rosette, C., DiDonato, J.A. et al . , NF-κB activation by ultraviolet light
is not dependent on a nuclear signal, Science, 261, 1442, 1993.
[62]
Bender, K., Gottlicher, M., Whiteside, S. et al . , Sequential DNA damage-independent
and -dependent activation of NF-κB by UV, Embo J., 17, 5170, 1998.
[63]
Li, N. and Karin, M., Ionizing radiation and short wavelength UV activate NF-κB
through two distinct mechanisms, Proc. Natl. Acad. Sci. USA, 95, 13012, 1998.
[64]
Kato, T., Delhase, M., Hoffman, A. et al . , CK2 is a C-terminal IkappaB kinase
responsible for NF-κB activation during the UV response, Mol. Cell, 12, 829,
2003.
[65]
Sayed, M., Kim, S.O., Salh, B.S. et al., Stress-induced activation of protein kinase
CK2 by direct interaction with p38 mitogen-activated protein kinase, J. Biol. Chem.,
275, 16569, 200.
[66]
Tergaonkar, V., Bottero, V., Ikawa, M. et al . , IκB kinase-independent IκBα degrada-
tion pathway: Functional NF-κB activity and implications in cancer therapy, Mol.
Cell. Biol., 23, 8070, 2003.
[67]
Beinke, S. and Ley, S.C., Functions of NF-κB1 and NF-κB2 in immune cell biology,
Biochem. J., 382, 393, 2004.
[68]
Karin, M. and Ben-Neriah, Y., Phosphorylation meets ubiquitination: The control of
NF-κB activity, Ann. Rev. Immunol., 18, 621, 2000.
[69]
Harhaj, E.W., Maggirwar, S.B., and Sun, S.C., Inhibition of p105 processing by
NF-κB proteins in transiently transfected cells, Oncogene, 12, 2385, 1996.
[70]
Syrovets, T., Jendrach, M., Rohwedder, A. et al., Plasmin-induced expression of
cytokines and tissue factor in human monocytes involves AP-1 and IKK-β-mediated
NF-κB activation, Blood, 97, 3941, 2001.
[71]
Ishikawa, H., Claudio, E., Dambach, D. et al., Chronic inflammation and susceptibility
to bacterial infections in mice lacking the polypeptide (p) 105 precursor (NF-κB1)
but expressing p50, J. Exp. Med., 187, 985, 1998.
[72]
Ciechanover, A., Orian, A., and Schwartz, A.L., Ubiquitin-mediated proteolysis:
Biological regulation via destruction, Bioessays, 22, 442, 2000.
[73]
Lin, L., DeMartino, G.N., and Greene, W.C., Cotranslational biogenesis of NF-κB
p50 by the 26S proteasome, Cell, 92, 819, 1998.
[74]
Mercurio, F., DiDonato, J.A., Rosette, C. et al . , p105 and p98 precursor proteins play
an active role in NF-κB-mediated signal transduction, Genes Dev., 7, 705, 1993.
[75]
Fan, C.-M. and Maniatis, T., Generation of p50 subunit of NF-κB by processing of
p105 through an ATP-dependent pathway, Nature, 354, 395, 1991.
[76]
Donald, R., Ballard, D.W., and Hawiger, J., Proteolytic processing of NF-κB/IκB in
human monocytes, J. Biol. Chem., 270, 9, 1995.
[77]
Belich, M.P., Salmeron, A., Johnston, L.H. et al . , TPL-2 kinase regulates the proteol-
ysis of the NF-κB inhibitory protein NF-κB1 p105, Nature, 397, 363, 1999.
Search WWH ::




Custom Search