Biomedical Engineering Reference
In-Depth Information
[35]
Spencer, E., Jiang, J., and Chen, Z.J., Signal-induced ubiquitination of IκBα by the
F-box protein Slimb/βTrCP, Genes Dev., 13, 284, 1999.
[36]
Hattori, K., Hatakeyama, S., Shirane, M. et al . , Molecular dissection of the interac-
tions among IkappaBalpha, FWD1, and Skp1 required for ubiquitin-mediated pro-
teolysis of IkappaBalpha, J. Biol. Chem., 274, 29641, 1999.
[37]
Kroll, M., Margottin, F., Kohl, A. et al . , Inducible degradation of IκBα by the
proteasome requires interaction with the F-box protein h-βTrCP, J. Biol. Chem., 274,
7941, 1999.
[38]
Baldi, L., Brown, K., Franzoso, G. et al . , Critical role for lysines 21 and 22 in signal-
induced, ubiquitin-mediated proteolysis of IkappaBalpha, J. Biol. Chem., 271, 376, 1996.
[39]
Petroski, M.D. and Deshaies, R.J., Context of multiubiquitin chain attachment influ-
ences the rate of Sic1 degradation, Mol. Cell, 11, 1435, 2003.
[40]
Neish, A.S., Gewirtz, A.T., Zeng, H. et al . , Prokaryotic regulation of epithelial
responses by inhibition of IκBα ubiquitination, Science, 289, 1560, 2000.
[41]
Peng, J., Schwartz, D., Elias, J.E. et al . , A proteomics approach to understanding
protein ubiquitination, Nat Biotechnol, 21, 921, 2003.
[42]
Ben-Neriah, Y., Regulatory functions of ubiquitination in the immune system, Nature
Immunol., 3, 20, 2002.
[43]
Orlicky, S., Tang, X., Willems, A. et al . , Structural basis for phosphodependent sub-
strate selection and orientation by the SCFCdc4 ubiquitin ligase, Cell, 112, 243, 2003.
[44]
Neer, E.J., Schmidt, C.J., Nambudripad, R. et al . , The ancient regulatory-protein
family of WD-repeat proteins, Nature, 371, 297, 1994.
[45]
Busino, L., Donzelli, M., Chiesa, M. et al . , Degradation of Cdc25A by βTrCP during
S phase and in response to DNA damage, Nature, 426, 87, 2003.
[46]
Davis, M., Hatzubai, A., Anderson, J.S. et al., Pseudosubstrate regulation of the
SCF(βTrCP) ubiquitin ligase by hnRNP-U, Genes Dev., 16, 439, 2002.
[47]
Kanemori, Y., Uto, K., and Sagata, N., βTrCP recognizes a previously undescribed
nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases, Proc.
Natl. Acad. Sci. USA, 102, 6279, 2005.
[48]
Chiaur, D.S., Murthy, S., Cenciarelli, C. et al . , Five human genes encoding F-box
proteins: Chromosome mapping and analysis in human tumors, Cytogenet Cell Genet,
88, 255, 2000.
[49]
Nakayama, K., Hatakeyama, S., Maruyama, S. et al . , Impaired degradation of inhib-
itory subunit of NF-κB (IκB) and β-catenin as a result of targeted disruption of the
βTrCP1 gene, Proc. Natl. Acad. Sci. USA, 100, 8752, 2003.
[50]
Guardavaccaro, D., Kudo, Y., Boulaire, J. et al . , Control of meiotic and mitotic
progression by the F box protein βTrCP1 in vivo, Dev. Cell, 4, 799, 2003.
[51]
Kafri, R., Bar-Even, A., and Pilpel, Y., Transcription control reprogramming in genetic
backup circuits, Nat. Genet., 37, 295, 2005.
[52]
Campbell, K.J., Rocha, S., and Perkins, N.D., Active repression of anti-apoptotic
gene expression by RelA (p65) NF-κB, Mol. Cell, 13, 853, 2004.
[53]
Huang, T.T., Wuerzberger-Davis, S.M., Seufzer, B.J. et al . , NF-κB activation by
camptothecin: A linkage between nuclear DNA damage and cytoplasmic signaling
events, J. Biol. Chem., 275, 9501, 2000.
[54]
Huang, T.T., Feinberg, S.L., Suryanarayanan, S. et al . , The zinc finger domain of
NEMO is selectively required for NF-κB activation by UV radiation and topoi-
somerase inhibitors, Mol. Cell Biol., 22, 5813, 2002.
[55]
Huang, D.B., Wuerzberger-Davis, S.M., Wu, Z.-H. et al . , Sequential modification of
NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic
shock, Cell, 115, 565, 2003.
Search WWH ::




Custom Search