Biomedical Engineering Reference
In-Depth Information
84. Chen, X.-Z., Steel, A., and Hediger, M.A. (2000). Functional roles of histidine and tyrosine
residues in the H + -peptide transporter PepT1. Biochem. Biophys. Res. Commun. 272:726-
730.
85. Kulkarni, A.A, Haworth, I.S., and Lee, V.H. (2003). Transmembrane segment 5 of the
dipeptide transporter hPepT1 forms a part of the substrate translocation pathway. Biochem.
Biophys. Res. Commun. 306:177-185.
86. Uchiyama, T., Kulkarni, A.A., Davies, D.L., and Lee, V.H. (2003). Biophysical evidence
for His57 as a proton-binding site in the mammalian intestinal transporter hPepT1. Pharm.
Res. 20(12):1911-1916.
87. Fei, Y.J., Liu, W., Prasad, P.D., Kekuda, R., Oblak, T.G., Ganapathy, V., and Leibach,
F.H. (1997). Identification of the histidyl residue obligatory for the catalytic activity of
the human H + /peptide cotransporters PepT1 and PepT2. Biochemistry 14:452-460.
88. Doring, F., Dorn, D., Bachfisher, U., Amasheh, S., Herget, M., and Daniel, H. (1996).
Functional analysis of a chimeric mammalian peptide transporter derived from the in-
testinal and renal isoforms. J. Physiol. 497:773-779.
89. Doring, F., Martini, C., Walter, J., and Daniel, H. (2002). Importance of a small N-terminal
region in mammalian peptide transporters for substrate affinity and function. J. Membr.
Biol. 186:55-62.
90. Terada, T., Saito, H., Sawada, K., Hashimoto, Y., and Inui, K.-I. (2000). N-Terminal halves
of rat H + /peptide transporters are responsible for their substrate recognition. Pharm. Res.
17:15-20.
91. Gaildrat, P., Moller, M., Mukda, S., Humphries, A., Carter, D.A., Ganapathy, V., and Klein,
D.C. (2005). A novel pineal-specific product of the oligopeptide transporter PepT1 gene:
circadian expression mediated by cAMP activation of an intronic promoter. J. Biol. Chem.
280(17):16851-16860.
92. Kulkarni, A.A., Haworth, I.S., Uchiyama, T., and Lee, V.H. (2003). Analysis of transmem-
brane segment 7 of the dipeptide transporter hPepT1 by cysteine-scanning mutagenesis.
J. Biol. Chem. 278(51):51833-51840.
93. Bailey, P.D, Boyd, C.A, Bronk, J.R., Collier, I.D., Meredith, D., Morgan, K.M., and
Temple, C.S. (2000). How to make drugs orally active: a substrate model for the peptide
transporter PepT1. Angew Chem. Int. Ed. 39:505-508.
94. Brandsch, M., Thunecke, F., Kullertz, G., Schutkowski, M., Fischer, G., and Neubert, K.
(1998). Evidence for the absolute conformational specificity of the intestinal H + /peptide
symporter, PEPT1. J. Biol. Chem. 273(7):3861-3864.
95. Enjoh, M., Hashimoto, K., Arai, S., and Shimizu, M. (1996). Inhibitory effect of arphame-
nine A on intestinal dipeptide transport. Biosci. Biotechnol. Biochem. 60(11):1893-1895.
96. Temple, C., Stewart, A., Meredith, D., Listr, N.A., Morgan, K.M., Collier, I.D., Vaughan-
Jones, R.D., Boyd, C.A.R., Bailey, P., and Bronk, J.R. (1998). Peptide mimics as substrates
for the intestinal peptide transporter. J. Biol. Chem. 273:20-22.
97. Vabeno, J., Lejon, T., Nielsen, C.U., Steffansen, B., Chen, W., Ouyang, H., Borchardt,
R.T., and Luthman, K. (2004). Phe-Gly dipeptidomimetics designed for the di-/tripeptide
transporters PEPT1 and PEPT2: synthesis and biological investigations. J. Med. Chem.
47(4):1060-1069.
98. Doring, F., Will, J., Amasheh, S., Clauss, W., Ahlbrecht, H., and Daniel, H. (1998).
Minimal molecular determinants of substrates for recognition by the intestinal peptide
transporter. J. Biol. Chem. 273:23211-23218.
 
Search WWH ::




Custom Search