Chemistry Reference
In-Depth Information
development of multi-functional, self-assembling dynamic nanoscale systems which
open up novel types of soft matter technology, which is conceptually influenced by
the physical building principles of living matter, but relies on simple components apt
to synthesis and thorough control.
Clearly, there is still a long way to go before emulsion-based self-assembled func-
tional systems superior to conventional top-down devices can be produced. This does
not only concern the problem of length scales (which appears favorably addressable,
as discussed above), but also the question of how to direct many different droplet
contents and membrane compounds into the desired patterns. First steps have been
undertaken, but the majority of an exciting pathway is still ahead.
References
1. H.S. Bennett, Will future measurement needs of the semiconductor industry be met? J. Res.
Natl. Inst. Stand. Technol. 112 , 25-38 (2007)
2. G.E.Moore, Crammingmore components onto integrated circuits. Proc. IEEE 86 , 82-85 (1998)
3. G.M. Altschuler, K.R. Willison, Development of free-energy-based models for chaperonin
containing TCP-1 mediated folding of actin. J. Royal Soc., Inter. Royal Soc. 5 , 1391-1408
(2008)
4. E. Ben-Jacob, Bacterial self-organization: co-enhancement of complexification and adaptabil-
ity in a dynamic environment. Philos. Trans. Series A, Math. Phys. Eng. Sci. 361 , 1283-1312
(2003)
5. P. Alivisatos, P.F. Barbara, A.W. Castleman, J. Chang, D.A. Dixon,M.L. Klein, G.L.McLendon,
J.S. Miller, M.A. Ratner, P.J. Rossky, S.I. Stupp, M.E. Thompson, Frommolecules to materials:
current trends and future directions. Adv. Mat. 10 (16), 1297-1336 (1998)
6. J.-M. Lehn, Toward self-organization and complex matter. Sci. (New York) 295 , 2400-2403
(2002)
7. D.G. Kurth, P. Lehmann, M. Schütte, A route to hierarchical materials based on complexes
of metallosupramolecular polyelectrolytes and amphiphiles. Proc. Nat. Acad. Sci. USA 97 ,
5704-5707 (2000)
8. C.M. Drain, Self-organization of self-assembled photonic materials into functional devices:
Photo-switched conductors. Proc. Nat. Acad. Sci. 99 , 5178-5182 (2002)
9. B. P. Binks, F. Adams, P. Walstra, B. W. Brooks, H. N. Richmond, Modern Aspects of Emulsion .
1st edn. (Royal Society of Chemistry, Cambridge, 1998)
10. P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, E. Kumacheva, H.A. Stone, Formation of
monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett. 85 (13), 2649
(2004)
11. M. Seo, Z. Nie, S. Xu, P.C. Lewis, E. Kumacheva, Microfluidics: from dynamic lattices to
periodic arrays of polymer disks. Langmuir: ACS J. Surf. Colloids 21 , 4773-4775 (2005)
12. C. Priest, S. Herminghaus, R. Seemann, Generation of monodisperse gel emulsions in a
microfluidic device. Appl. Physi. Lett. 88 (2), 024106 (2006)
13. V. Chokkalingam, S. Herminghaus, R. Seemann, Self-synchronizing pairwise production of
monodisperse droplets by microfluidic step emulsification. Appl. Phys. Lett. 93 (25), 254101
(2008)
14. G. M. Whitesides, The origins and the future of microfluidics. Nature 442 , 368-373 (2006)
15. H. Song, D.L. Chen, R.F. Ismagilov, Reactions in droplets inmicrofluidic channels. Ang. Chem.
Int. Ed. 45 , 7336-7356 (2006)
16. W. Drenckhan, S. Cox, G. Delaney, H. Holste, D. Weaire, N. Kern, Rheology of ordered
foams: on the way to discrete microfluidics. Colloids Surf. A: Physicochemical Eng. Aspects
263 , 52-64 (2005)
 
Search WWH ::




Custom Search