Environmental Engineering Reference
In-Depth Information
119. Nguyen NT, Zhu G, Chua YC et al (2010) Magnetowetting and sliding motion of a sessile
ferrofluid droplet in the presence of a permanent magnet. Am Chem Soc Langmuir 26
(15):12553 - 12559
120. Choi SB, Han YM (2012) Magnetorheological fluid technology: applications in vehicle
systems. CRC Press, Boca Raton, p 322
121. Kavlicoglu NC, Kavlicoglul BM, Liu Y et al (2007) Response time and performance of a
high-torque magneto-rheological
fl
uid limited slip differential clutch. Smart Mater Struct
159
122. Salloom MY (2013) Intelligent magneto-rheological
16:149
-
fl
uid directional control valve. Int J
409
123. Nguyen QH, Choi SB, Wereley NM (2008) Optimal design of magnetorheological valves via
a nite element method considering control energy and a time constant. Smart Mater Struct
17:025024
124. Karakoc K, Park EJ, Suleman A (2008) Design considerations for an automotive
magnetorheological brake. Mechatronics 18:434
Innov Manag Technol 4(4):406
-
447
125. Wereley NM (ed) (2013) Magnetorheology: advances and applications. Royal Society of
Chemistry: RSC Smart Materials, London, p 396
126. Ahn S, Kasi RM, Kim SC et al (2008) Stimuli-responsive polymer gels. Soft Matter
4:1151 - 1157
127. Filipcsei G, Zr í nyi M (2010) Magnetodeformation effects and the swelling of ferrogels in a
uniform magnetic eld. J Phys: Condens Matter 22:276001
128. Zubarev A-Y (2012) On the theory of the magnetic deformation of ferrogels. Soft Matter
8:3174
-
3179
129. Yamanaka S, Abe H, Naito M et al (2012) Colodial dispersibility of fatty acid-capped iron
nanoparticles and its effects on static and dynamic magnetorheological response. College of
Environmental Technology, Muroran Institute of Technology, Muroran
130. Weiss KD, Duclos TG, Carlson JD et al (1993) High strength magneto-and electro-
rheological
-
uids. Soc Autom Eng:932451
131. Carlson JD, Weiss KD (1994) A growing attraction to magnetic
fl
fl
uids. Mach Des 66
64
132. Fang F, Liu YD, Choi HJ (2012) Carbon nanotube coated magnetic carbonyl iron
microspheres prepared by solvent casting method and their magneto-responsive
characteristic. Collodials and Surfaces A. Physicochem Eng Aspects
133. Hao T (2002) Electrorheological suspensions. Adv Colloid Interface Sci 97:1 - 35
134. Winslow WM (1949) Induced bration of suspensions. J Appl Phys 20:1137 - 1140
135. Halsey TC (1992) Electrorheological fluids. Science 258:761 - 766
136. Block H, Kelly JP (1988) Electro-rheology. J Phys D Appl Phys 21:1661
137. Unal HI
(15):61
-
(ed)
(2013) 13th International conference on electrorheological
fluids and
magnetorheological suspensions (ERMR2012). J Phys: Conf Ser 412:011001
138. Nava R, Ponce MA, Rejon L et al (1997) Response time and viscosity of electrorheological
fl
75
139. Martin JE, Odinek J, Halsey TC et al (1998) Structure and dynamics of electrorheological
fl
uids. Smart Mater Struct 6:67
-
775
140. Yildirim G, Genc S (2013) Experimental study on heat transfer of the magnetorheological
fl
uids. Phys Rev E 57(1):756
-
uids. Smart Mater Struct 22:085001
141. Wang YC, Sun XX, Tang XR et al (2010) Investigation of thermal conductivity of alumina/
silicone oil electrorheological
425
142. Reinecke BN, Shan JW, Suabedissen KK et al (2008) On the anisotropic thermal
conductivity of magnetorheological suspensions. J Appl Phys 104(2):023507
143. Kao J, Sung WP, Chen R (2012) Research on the electrical and thermal conductivity of
magnetorheological fluid. Adv Mater Res 581 - 582:786 - 789
144. Bica I (2006) Thermal conductivity of a magnetoreheological suspension based on mineral
oil and iron micro-particles. J Ind Eng Chem 12(4):620 - 625
fl
uids. Adv Mater Res 129
131:421
-
-
Search WWH ::




Custom Search