Environmental Engineering Reference
In-Depth Information
93. Yeo L, Chang H-C (2006) Electrowetting lms on parallel line electrodes. Phys Rev E
73:011605
94. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of liquid
droplets for microfluidic applications. Lab Chip 2:96 - 101
95. Zhao C, Yang C (2013) Electrokinetics of non-Newtonian fluids: a review. Adv Colloid
Interface Sci 201
108
96. Squires TM, Quake SR (2005) Micro
202:94
-
-
fl
uidics:
fl
uid physics at the nanoliter scale. Rev Mod
1026
97. Nguyen NT, Wereley ST (2006) Fundamentals and applications of micro
Phys 77(3):977
-
fl
uidics, 2nd edn.
Artech House Inc., Norwood
98. Bruus H (2008) Theoretical Micro
uidics. Department of Micro and Nanotechnology
Technical University of Denmark, Oxford, New York
99. Ramos A (ed) (2011) Electrokinetics and electrohydrodynamics in microsystems, Springer,
New York, p 297
100. Tabeling P (2005) Introduction to micro
fl
uidics, translated by Suelin Chen. Massachusetts
Institute of Technology, Cambridge, Oxford
101. Rosensweig RE (1985) Ferrohydrodynamics. Dover Publications, New York, p 344
102. Philip J, Shima PD (2012) Thermal properties of nanofluids. Adv Colloid Interface Sci
183 - 184:30 - 45
103. Sundar LS, Singh MK, Sousa ACM (2013) Investigation of thermal conductivity and
viscosity of Fe 3 O 4 nanofluid for heat transfer applications. Int Commun Heat Mass 44:7 - 14
104. Esmaeilnejad A, Aminfar H, Neistanak MS (2014) Numerical investigation of forced
convection heat transfer through microchannels with non-Newtonian nano
fl
fl
uids. Int J Therm
86
105. Azizian R, Doroodchi E, McKrell T et al (2014) Effect of magnetic eld on laminar
convective heat transfer of magnetite nano
Sci 75:76
-
109
106. Nkurikiyimfura I, Wang Y, Pan Z (2013) Heat transfer enhancement by magnetic nano
fl
uids. Int J Heat Mass Transf 68:94
-
fl
uids
561
107. Motozawa M, Sekine T, Sawada T et al (2013) Variation of forced convective heat transfer in
rectangular duct
A review. Renew Sust Energy Rev 21:548
-
fl
ow of a magnetic
fl
uid under magnetic
eld. In: 13th International
conference on electrorheological
fl
uids and magnetorheological suspensions (ERMR2012).
J Phys: Conf Ser 412:012025
108. Odenbach S (2002) Magnetoviscous effects in ferro
uids. Springer, Berlin, p 151
109. Odenbach S (ed) (2009) Colloidal magnetic fluids. Basics, development and application of
ferrofluids. Springer, Berlin, p 430
110. Nguyen NT (2012) Micro magnetofluidics-interactions between magnetism and fluid flow on
the microscale. Microfluid Nanofluid 12(1 - 4):1 - 16
111. Krichler M, Odenbach S (2013) Thermal conductivity measurements on ferrofluids with
special reference to measuring arrangement. J Magn Magn Mater 326:85 - 90
112. Fu HL, Gao L (2011) Theory for anisotropic thermal conductivity of magnetic nano
fl
fl
uids.
3592
113. Gavili A, Zabihi F, Isfahani TD et al (2012) The thermal conductivity of water base
ferro
Phys Lett A 375:3588
-
98
114. Fang X, Xuan Y, Li Q (2009) Anisotropic thermal conductivity of magnetic
fl
uids under magnetic eld. Exp Therm Fluid Sci 41:94
-
fl
uids. Prog Natl
211
115. Berim GO, Ruckenstein E (2011) Nanodrop of an ising magnetic
Sci 19:205
-
fl
uid on a solid surface.
8760
116. Zhou Q, Ristenpart WD, Stroeve P (2011) Magnetically induced decrease in droplet contact
angle on nanostructured surfaces. Langmuir 27:11747
Langmuir 27(14):8753
-
11751
117. Lee CP, Yang ST, Wei ZH (2012) Field dependent shape variation of magnetic
-
uid droplets
on magnetic dosts. Department of Power Mechanical Engineering, National Tsing Hua
University, Hsinchu
118. Knieling H, Rehberg I, Richter R (2010) The growth of localized states on the surface of
magnetic fluids. University of Bayreuth, Bayreuth
fl
Search WWH ::




Custom Search