Biomedical Engineering Reference
In-Depth Information
18. Hock B, Rahman M, Rauchalles S et al (1999) Stabilisation of immunoassays and receptor
assays. J Mol Catal B Enzym 7:115-124
19. Butler JE (2000) Solid supports in enzyme-linked immunosorbent assay and other solid-
phase immunoassays. Methods 22:4-23
20. Paschke M (2006) Phage display systems and their applications. Appl Microbiol Biotechnol
70:2-11
21. Sidhu SS, Koide S (2007) Phage display for engineering and analyzing protein interaction
interfaces. Curr Opin Struct Biol 17:481-487
22. Gronwall C, St ˚ hl S (2009) Engineered affinity proteins - generation and applications.
J Biotechnol 140:254-269
23. Hey T, Fiedler E, Rudolph R et al (2005) Artificial, non-antibody binding proteins for
pharmaceutical and industrial applications. Trends Biotechnol 23:514-522
24. Binz HK, Amstutz P, Pluckthun A (2005) Engineering novel binding proteins from
nonimmunoglobulin domains. Nat Biotechnol 23:1257-1268
25. Stoltenburg R, Reinemann C, Strehlitz B et al (2007) SELEX-A (r)evolutionary method to
generate high-affinity nucleic acid ligands. Biomol Eng 24:381-403
26. Danielsson B (2007) Artificial receptors. Adv Biochem Eng Biotechnol 109:97-122
27. Mairal T, Cengiz ¨ zalp V, Lozano S ´ nchez P et al (2008) Aptamers: molecular tools for
analytical applications. Anal Bioanal Chem 390:989-1007
28. Missailidis S, Hardy A (2009) Aptamers as inhibitors of target proteins. Expert Opin Ther Pat
19:1073-1082
29. Mayes AG, Whitcombe MJ (2005) Synthetic strategies for the generation of molecularly
imprinted organic polymers. Adv Drug Deliv Rev 57:1742-1778
30. Alexander C, Andersson HS, Andersson LI et al (2006) Molecular imprinting science and
technology: a survey of the literature for the years up to and including 2003. J Mol Recognit
19:106-180
31. Svenson J, Nicholls IA (2001) On the thermal and chemical stability of molecularly imprinted
polymers. Anal Chim Acta 435:19-24
32. Piletsky SA, Piletska EV, Karim K et al (2002) Polymer cookery: influence of polymerization
conditions on the performance of molecularly imprinted polymers. Macromolecules
35:7499-7504
33. Piletsky SA, Guerreiro A, Piletska EV et al (2004) Polymer cookery. 2. Influence of
polymerization pressure and polymer swelling on the performance of molecularly imprinted
polymers. Macromolecules 37:5018-5022
34. Piletsky SA, Mijangos I, Guerreiro A et al (2005) Polymer cookery: influence of polymeri-
zation time and different initiation conditions on performance of molecularly imprinted
polymers. Macromolecules 38:1410-1414
35. Mijangos I, Navarro-Villoslada F, Guerreiro A et al (2006) Influence of initiator and different
polymerisation conditions on performance of molecularly imprinted polymers. Biosens
Bioelectron 22:381-387
36. Piletska EV, Guerreiro AR, Whitcombe MJ et al (2009) Influence of the polymerization
conditions on the performance of molecularly imprinted polymers. Macromolecules
42:4921-4928
37. Shamsipur M, Besharati-Seidani A, Fasihi J et al (2010) Synthesis and characterization of
novel ion-imprinted polymeric nanoparticles for very fast and highly selective recognition of
copper(II) ions. Talanta 83:674-681
38. Diltemiz SE, Say R, Buyuktiryaki S et al (2008) Quantum dot nanocrystals having guanosine
imprinted nanoshell for DNA recognition. Talanta 75:890-896
39. Hoshino Y, Kodama T, Okahata Y et al (2008) Peptide imprinted polymer nanoparticles:
a plastic antibody. J Am Chem Soc 130:15242-15243
40. Hoshino Y, Koide H, Urakami T et al (2010) Recognition, neutralization, and clearance of
target peptides in the bloodstream of living mice by molecularly imprinted polymer
nanoparticles: a plastic antibody. J Am Chem Soc 132:6644-6645
41. Cirillo G, Iemma F, Puoci F et al (2009) Imprinted hydrophilic nanospheres as drug delivery
systems for 5-fluorouracil sustained release. J Drug Target 17:72-77
Search WWH ::




Custom Search