Biomedical Engineering Reference
In-Depth Information
Weber, C. H., Lofvander, J. P. A. and Evans, A. G. (1994), 'Creep anisotrophy of a
continuous-fibre-reinforced SiC/CAS composite', J. Am. Ceram. Soc., 77(7),
1745-1752.
Wei Chen, I. and Xue, L. A. (1990), 'Development of superplastic structural
ceramics', J. Am. Ceram. Soc., 73, 2585-2609.
Wierenga, P. E., Dirks, A. G. and Broek, J. J. (1984), 'Ultramicrohardness
experiments on vapour deposited films of pure metals & alloys', J. Thin Solid
Films, 119, 375-382.
Wilkinson, D. S. (1998), 'Creep mechanisms in multiphase ceramic materials', J. Am.
Ceram. Soc., 81, 275-299.
Willert-Porada, M., Gerdes, T. and Borchert, R. (1995), 'Application of microwave
processing to preparation of ceramic and metal-ceramic FGM', in IIschner, B.
and Cherradi, N. (eds) Proceedings of 3rd International Symposium on Structural
and Functional Gradient Materials, Presses Polytechniques et Universitaires
Romandes, Lausanne, 15-21.
Wilson, J. and Kunz, S. M. (1988), 'Microwave sintering of partially stabilized
zirconia', J. Am. Ceram. Soc., 71, C40-C41.
Wu, C. C. M., Kahn, M. and Moy, W. (1996), 'Piezoelectric ceramics with functional
gradients: a new application in material design', J. Am. Ceram. Soc., 79(3), 809-
813.
Wu, X. and Holmes, J. W. (1993), 'Tensile creep and creep-strain recovery behavior
of silicon carbide fibre/calcium aluminosilicate matrix ceramic composites', J.
Am. Ceram. Soc., 76(10), 2695-2700.
Yanai, T., Nakahira, A., Suganuma, K. and Niihara, K. (1990), J. Japan Soc.
Powder Powder Metall., 37, 571-574.
Yongli, L. (2006), 'Nanophase ceramic composites', in Low, I. M. (ed.) Ceramic
Matrix Composites, Microstructure, Properties and Applications, Woodhead
Publishing, Cambridge, 243-259.
Yonn, C. K. and Chen, I. W. (1990), 'Superplastic flow of two-phase ceramics
containing rigid inclusions-zirconia/mullite composites', J. Am. Ceram. Soc., 73,
1555-1565.
Yoshida, H., Okada, K., Ikuhara, Y. and Sakuma, T. (1997), 'Improvement of high-
temperature creep resistance in fine-grained Al 2 O 3 by Zr 4+ segregation in grain-
boundaries'. Phil. Mag. Lett., 76, 9-14.
Zhan, G. D., Kuntz, J. D., Wan, J. et al. (2003a), 'Single-wall carbon nanotubes as
attractive toughening agents in alumina-based nanocomposites', Nature Mater.,
2, 38-42.
Zhan, G. D., Kuntz, J. D., Wan, J. et al. (2003b), 'Plasticity in nanomaterials',
Mater. Res. Soc. Symp. Proc., 740-741.
Zhan, G. D., Kuntz, J., Wan, J., Garay, J. and Mukherjee, A. K. (2003c), 'A novel
processing route to develop a dense nanocrystalline alumina matrix ( < 100 nm)
nanocomposite material', J. Am. Ceram. Soc., 86(1), 200-202.
Zhao, C., Vleugels, J., Vandeperre, L. and Van Der Biest, O. (2000), 'Cylindrical
Al 2 O 3 /TZP functionally graded materials by EPD', Br. Ceram. Trans., 99(6),
284-287.
Zhao, J., Stearns, L. C., Harmer, M. P., Chan, H. M. Miller, G. A. and Cook, R. F.
(1993), 'Mechanical behavior of alumina-silicon carbide nanocomposites', J.
Am. Ceram. Soc., 76, 503-510.
￿ ￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search