Biomedical Engineering Reference
In-Depth Information
[23] S.S. Suri, F. Hicham, B. Singh, Nanotechnology-based drug delivery systems, J. Occup. Med. Toxicol. 2
(2007) 2-16.
[24] J. Cheng, M.J. Meziani, Y-P. Sun, H. Cheng, Poly(ethylene glycol)-conjugated multi-walled carbon nano-
tubes as an efficient drug carrier for overcoming multidrug resistance, Toxicol. Appl. Pharmacol. 250
(2011) 184-93.
[25] X. Liu, H. Tao, K. Yang, S. Zhang, S.T. Lee, Z. Liu, Optimization of surface chemistry on single-walled
carbon nanotubes for in vivo photothermal ablation of tumors, Biomaterials 32 (2010) 144 -151.
[26] J. Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, I. Ojima, Functionalized single-walled carbon
nanotubes as rationally designed vehicles for tumor-targeted drug delivery, J. Am. Chem. Soc. 130 (2008)
16778-16785.
[27] X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson, Targeted delivery and controlled release of doxorubicin to
cancer cells using modified single wall carbon nanotubes, Biomaterials 30 (2009) 6041-6047.
[28] X. Shi, S.H. Wang, M. Shen, M.E. Antwerp, X. Chen, C. Li, et al., Multifunctional dendrimer-modified
multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging,
Biomacromolecules 10 (2009) 1744-1750.
[29] E. Fortunati, A. Bout, M.A. Zanta, D. Valerio, M Scarpa, In vitro and in vivo gene transfer to pulmonary
cells mediated by cationic liposomes, Biochim. Biophys. Acta 1306 (1996) 55-62.
[30] T. Rochat, M.A. Morris, Gene therapy for cystic fibrosis by means of aerosol, J. Aerosol. Med. 15 (2002)
229-235.
[31] F.D. Ledley, Non-viral gene therapy, Curr. Opin. Biotechnol. 5 (1994) 626-636.
[32] C. Coutelle, R. Williamson, Liposomes and viruses for gene therapy of cystic fibrosis, J. Aerosol. Med. 9
(1996) 79-88.
[33] N.W. Kam, Z. Liu, H. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: an investi-
gation of the uptake mechanism and pathway, Angew. Chem. Int. Ed. Engl. 45 (2006) 577-581.
[34] N.W.S. Kam, M. O'Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological trans-
porters and near-infrared agents for selective cancer cell destruction, Proc. Natl. Acad. Sci. U.S.A. 102
(2005) 11600-11605.
[35] A. Nunes, N. Amsharov, C. Guo, V. Bossche, P. Santhosh, T.K. Karachalios, et al., Hybrid polymer-grafted
multiwalled carbon nanotubes for in vitro gene delivery, Small 6 (2010) 2281-2291.
[36] N.W. Kam, Z. Liu, H. Dai, Functionalization of carbon nanotubes via cleavable disulfide bonds for
efficient intracellular delivery of siRNA and potent gene silencing, J. Am. Chem. Soc. 127 (2005)
12492-12493.
[37] J.E. Podesta, K.T. Al-Jamal, M.A. Herrero, B. Tian, H. Ali-Boucetta, V. Hegde, et al., Antitumor activity
and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xeno-
graft model, Small 5 (2009) 1176-1185.
[38] X. Wang, J. Ren, X. Qu, RNA Targeted, Interference of cyclin A2 mediated by functionalized single-walled
carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells,
ChemMedChem 3 (2008) 940-945.
[39] Z. Zhang, X. Yang, B. Zeng, S. Wang, T. Zhu, R.B. Roden, et al., Delivery of telomerase reverse transcrip-
tase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses
tumor growth, Clin. Cancer Res. 12 (2006) 4933-4939.
[40] S.L. Hussey, B.R. Peterson, Efficient delivery of streptavidin to mammalian cells: clathrin-mediated endo-
cytosis regulated by a synthetic ligand, J. Am. Chem. Soc. 124 (2002) 6265-6273.
[41] X. Weng, M. Wang, J. Ge, S. Yu, B. Liu, J. Zhong, et al., Carbon nanotubes as a protein toxin transporter
for selective HER2-positive breast cancer cell destruction, Mol. Biosyst. 5 (2009) 1224-1231.
[42] M.R. McDevitt, D. Chattopadyay, B.J. Kappel, J.S. Jaggi, S.R. Schiffman, C. Antczak, et al., Tumor target-
ing with antibody-functionalized, radiolabeled carbon nanotubes, J. Nucl. Med. 48 (2007) 1180-1189.
Search WWH ::




Custom Search