Biomedical Engineering Reference
In-Depth Information
References
[1] S. Iijima, Helical microtubules of graphite carbon, Nature 354 (1991) 56-58.
[2] D. Pantarotto, J.P. Briand, M. Prato, A Bianco, Translocation of bioactive peptides across cell membranes
by carbon nanotubes, Chem. Commun. (Camb.) 7 (2004) 16-17.
[3] D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J.P. Briand, M. Prato, et al., Functionalized carbon nano-
tubes for plasmid DNA gene delivery, Angew. Chem. Int. Ed. Engl. 43 (2004) 5242-5246.
[4] A. Bianco, K. Kostarelos, M Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem.
Biol. 9 (2005) 674-679.
[5] X. Chen, A. Kis, A. Zettl, C.R. Bertozzi, A cell nanoinjector based on carbon nanotubes, Proc. Natl. Acad
Sci. U.S.A. 104 (2007) 8218-8222.
[6] A.A. Bhirde, V Patel, J. Gavard, G. Zhang, A.A. Sousa, A. Masedunskas, et al., ACS Nano. 3 (2009)
307-316.
[7] N.W.S. Kam, Z. Liu, H. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: an inves-
tigation of the uptake mechanism and pathway, Angew. Chem. 44 (2005) 1-6.
[8] D. Cai, J.M. Mataraza, Z.H. Qin, Z. Huang, J. Huang, T.C. Chiles, et al., Highly efficient molecular deliv-
ery into mammalian cells using carbon nanotube spearing, Nat. Methods 2 (2005) 449-454.
[9] C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors
for the delivery of therapeutics, Biochim. Biophys. Acta 1758 (2006) 404-412.
[10] N.W.S. Kam, T.C. Jessop, P.A. Wender, H. Dai, Nanotube molecular transporters: internalization of carbon
nanotube-protein conjugates into mammalian cells, J. Am. Chem. Soc. 126 (2004) 6850-6851.
[11] V. Raffa, G. Ciofani, S. Nitodas, T. Karachalios, D. D'Alessandro, M. Masini, et al., Can the properties of
carbon nanotubes influence their internalization by living cells?, Carbon 64 (2008) 1600-1610.
[12] S.T. Reddy, A. Rehor, H.G. Schmoekel, J.A. Hubbell, M.A. Swartz, In vivo targeting of dendritic cells in
lymph nodes with poly(propylene sulfide) nanoparticles, J. Control. Release 112 (2006) 26-34.
[13] F. Yang, L. Fu de, J. Long, Q.X. Ni, Magnetic lymphatic targeting drug delivery system using carbon nano-
tubes, Med. Hypotheses 70 (2008) 765-767.
[14] F. Yang, J. Hu, D. Yang, J. Long, G. Luo, C. Jin, et al., Pilot study of targeting magnetic carbon nanotubes
to lymph nodes, Nanomedicine 4 (2009) 317-330.
[15] S. Dhar, Z. Liu, J. Thomale, H. Dai, S.J. Lippard, Targeted single-wall carbon nanotube-mediated Pt(IV)
prodrug delivery using folate as a homing device, J. Am. Chem. Soc. 130 (2008) 11467-11476.
[16] S. Hampel, D. Kunze, D. Haase, K. Krämer, M. Rauschenbach, M. Ritschel, et al., Carbon nanotubes filled
with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth, Nanomedicine 3
(2008) 175-182.
[17] A.L. Klibanov, K. Maruyama, V.P. Torchilin, L. Huang, Amphipathic polyethyleneglycols effectively pro-
long circulation time of liposomes, FEBS Lett. 268 (1990) 235-237.
[18] T.M. Allen, T. Mehra, C. Hansen, Y.C. Chin, Stealth liposomes: an improved sustained release system for
1-beta-D-arabinofuranosylcytosine, Cancer Res. 52 (1992) 2431-2439.
[19] C. Li, D. Yu, T. Inoue, D.J. Yang, L. Milas, N.R. Hunter, et al., Synthesis and evaluation of water-soluble
polyethylene glycol-paclitaxel conjugate as a paclitaxel prodrug, Anticancer Drugs 7 (1996) 642-648.
[20] Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, et al., Drug delivery with carbon nanotubes for in
vivo cancer treatment, Cancer Res. 68 (2008) 6652-6660.
[21] C.L. Lay, H.Q. Liu, H.R. Tan, Y. Liu, Delivery of paclitaxel by physically loading onto poly(ethylene gly-
col) (PEG)-graft-carbon nanotubes for potent cancer therapeutics, Nanotechnology 21 (2010) 065101.
[22] J.Y. Chan, A.C. Chu, K.P. Fung, Inhibition of P-glycoprotein expression and reversal of drug resistance of
human hepatoma HepG2 cells by multidrug resistance gene (mdr1) antisense RNA, Life Sci. 67 (2000)
2117-2124.
 
Search WWH ::




Custom Search