Biomedical Engineering Reference
In-Depth Information
[25] L.V. Taveira, J.M. Macak, H. Tsuchiya, L.F.P. Dick, P. Schmuki, Initiation and growth of self-organized
TiO 2 nanotubes anodically formed in NH 4 F/(NH 4 ) 2 SO 4 electrolytes, J. Electrochem. Soc. 152 (10) (2005)
B405.
[26] J.M. Macak, H. Tsuchiya, L.V. Taveira, S. Aldabergerova, P. Schmuki, Smooth anodic TiO 2 nanotubes,
Angew. Chem. Int. Ed. 44 (2005) 7463.
[27] H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, et al., Self-organized TiO 2 nano-
tubes prepared in ammonium fluoride containing acetic acid electrolytes, Electrochem. Comm. 7 (6) (2005)
576.
[28] S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki, 250 μm long anodic TiO 2 nanotubes with hexagonal self-
ordering, Physica. Status. Solidi. (RRL) 1 (2) (2007) R65.
[29] H. Tsuchiya, S. Berger, J.M. Macak, A. Ghicov, P. Schmuki, Self-organized porous and tubular oxide layers
on TiAl alloys, Electrochem. Comm. 9 (9) (2007) 2397.
[30] A. Ghicov, S. Aldabergerova, H. Tsuchiya, P. Schmuki, TiO 2 -Nb 2 O 5 nanotubes with electrochemically tun-
able morphologies, Angew. Chem. Int. Ed. 45 (42) (2006) 6993.
[31] K. Yasuda, P. Schmuki, Formation of self-organized zirconium titanate nanotube layers by alloy anodiza-
tion, Adv. Mater. 19 (13) (2007) 1757.
[32] J.M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, P. Schmuki, Self-organized nanotubular oxide layers on
Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH 4 F solutions, J. Biomed. Mater. Res. A 75 (4)
(2005) 928.
[33] H. Tsuchiya, J.M. Macak, A. Ghicov, Y.C. Tang, S. Fujimoto, M. Niinomi, et al., Nanotube oxide coating
on Ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization, Electrochim. Acta 52 (1) (2006) 94.
[34] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Structure and
physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal. 27 (7) (1999)
629.
[35] S. Kubota, K. Johkura, K. Asanuma, Y. Okouchi, N. Ogiwara, K. Sasaki, et al., Titanium oxide nanotubes
for bone regeneration, J. Mater. Sci. Mater. Med. 15 (9) (2004) 1031.
[36] S.J. Seunghan Oh, Titanium oxide nanotubes with controlled morphology for enhanced bone growth,
Mater. Sci. Engg. C 26 (2006) 1301.
[37] K.S. Brammer, S. Oh, C.J. Cobb, L.M. Bjursten, H. van der Heyde, S. Jin, Improved bone-forming func-
tionality on diameter-controlled TiO 2 nanotube surface, Acta Biomater. 5 (8) (2009) 3215.
[38] S.N. Khan, J.M. Lane, The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in ortho-
paedic applications, Expert. Opin. Biol. Ther. 4 (5) (2004) 741.
[39] G. Balasundaram, C. Yao, T.J. Webster, TiO 2 nanotubes functionalized with regions of bone morphogenetic
protein-2 increases osteoblast adhesion, J. Biomed. Mater. Res. A 84 (2) (2008) 447.
[40] K.C. Popat, M. Eltgroth, T.J. Latempa, C.A. Grimes, T.A. Desai, Decreased Staphylococcus epidermis
adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes, Biomaterials 28 (32)
(2007) 4880.
[41] G. Eaninwene, 2nd, C. Yao, T.J. Webster, Enhanced osteoblast adhesion to drug-coated anodized nanotubu-
lar titanium surfaces, Int. J. Nanomed. 3 (2) (2008) 257.
[42] C. von Wilmowsky, S. Bauer, R. Lutz, M. Meisel, F.W. Neukam, T. Toyoshima, et al., In-vivo evaluation of
anodic TiO 2 nanotubes: an experimental study in the pig, J. Biomed. Mater. Res. B Appl. Biomater. 89 (1)
(2009) 165.
[43] L.M. Bjursten, L. Rasmusson, S. Oh, G.C. Smith, K.S. Brammer, S. Jin, Titanium dioxide nanotubes
enhance bone bonding in-vivo, J. Biomed. Mater. Res. A. (2009). (Epub ahead of print)
Search WWH ::




Custom Search