Biomedical Engineering Reference
In-Depth Information
[164] J.A. Spadaro, S.A. Albanese, S.E. Chase, Electromagnetic effects on bone formation at implants in the
medullary canal in rabbits, J. Orthop. Res. 8 (1990) 685 693.
[165] P.R. Supronowicz, et al., Novel current-conducting composite substrates for exposing osteoblasts to
alternating current stimulation, J. Biomed. Res. 59 (2002) 499 506.
[166] V. Lovatt, et al., Carbon nanotube substrates boost neuronal electronic signalling, Nano Lett. 5 (2005)
1107
1110.
[167] J.D. Weiland, D.J. Anderson, Chronic neural stimulation with thin-film, iridium oxide electrodes, IEEE
Trans. Biomed. Eng. 47 (2000) 911 918.
[168] X.Y. Cui, et al., Electrochemical deposition and characterization of conducting polymer polypyrrole/
PSS on multichannel neural probes, Sens. Actuators A Phys. 93 (2001) 8 18.
[169] A.S. Widge, et al., Self-assembled monolayers of polythiophene conductive polymers improve
biocompatibility and electrical
impedance of neural electrodes, Biosens. Bioelectron. 22 (2007)
1723 1732.
[170] S.F. Cogan, et al., Over-pulsing degrades activated iridium oxide films used for intracortical neural
stimulation, J. Neurosci. Methods 137 (2004) 141 150.
[171] B.L. Groenendaal, et al., Poly(3,4-ethylenedioxythiophene) and its derivaties: past, present, and future,
Adv. Mater. 12 (2000) 481 494.
[172] X.T. Cui, D.D. Zhou, Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation, IEEE Trans.
Neural Syst. Rehabil. Eng. 15 (2007) 502 508.
[173] E. Jan, et al., Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural inter-
face materials, Nano Lett. 9 (2009) 4012 4018.
[174] V. Lovat, et al., Carbon nanotube substrates boost neuronal electrical signaling, Nano Lett. 5 (2005)
1107 1110.
[175] E.W. Keefer, et al., Carbon nanotube coatings improves neuronal recordings, Nat. Nanotechnol. 21
(2008) 139 152.
[176] K. Matsumoto, et al., Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes,
Nanotechnology 21 (2010) 115101.
[177] M.P. Mattson, R.C. Haddon, A.M. Rao, Molecular functionalization of carbon nanotubes and use as
substrates for neuronal growth, J. Mol. Neurosci. 14 (2000) 175
182.
[178] X. Luo, et al., Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiopene) for chronic neural
stimulation, Biomaterials 32 (2011) 5551 5557.
[179] J.H. Zou, et al., Transparent carbon nanotube/poly (3,4-ethylenedioxythiopene) composite electrical
conductors, Soft Mater. 7 (2009) 355 365.
[180] X.Y. Cui, D.C. Martin, Electrochemical deposition and characterization of poly (3,4-ethylenedioxythio-
phene) on neural microelectrode arrays, Sens. Actuators B Chem. 89 (2003) 92 102.
[181] J. Niklinski, et al., The epidemiology of asbestos-related diseases, Lung Cancer 45 (Suppl. 1) (2004)
S7 S15.
[182] D.B. Warheit, et al., Comparitive pulmonary toxicity assessment of single-wall carbon nanotubes in
rats, Toxicol. Sci. 77 (2004) 117 125.
[183] D.B. Warheit, et al., Pulmonary toxicity study in rats with three forms of ultrafine TiO 2 particles:
different responses related to surface properties, Toxicology 230 (2007) 90 104.
[184] R. Colognato, et al., Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral
leukocytes in vitro, Mutagenesis 23 (2008) 377 382.
[185] M. Taira, et al., Studies on cytotoxicity of nickel ions using C3H10T1/2 fibroblast cells, J. Oral
Rehabil. 27 (2000) 1068 1072.
[186] V.E. Kagan, et al., Direct and indirect effects of single walled carbon nanotubes on RAW264.7 macro-
phages: role of iron, Toxicol. Lett. 165 (2006) 88 100.
Search WWH ::




Custom Search