Biomedical Engineering Reference
In-Depth Information
[142] V. Kozlovskaya, et al., Hydrogen-bonded LbL shells for living cell surface engineering, Soft Matter 7
(2011) 2364 2372.
[143] D. Chen, et al., Electrically conductive poly(vinyl alcohol) hybrid films containing graphene and lay-
ered double hydroxide fabricated via layer-by-layer self-assembly, Appl. Mater. Interfaces 2 (2010)
2005
2011.
[144] A.A. Mamedov, et al., Molecular design of strong single-wall carbon nanotube/polyelectrolyte multi-
layer composites, Nat. Mater. 1 (2002) 190 194.
[145] G. Francius, et al., Effect of crosslinking on the elasticity of polyelectrolyte multilayer films measured
by colloidal probe AFM, Microsc. Res. Tech. 69 (2006) 84 92.
[146] M.M. Stevens, J.H. George, Exploring and engineering the cell surface interface, Science 310 (2005)
1135 1139.
[147] A.A. Chen, et al., Modulation of hepatocyte phenotype in vitro via chemomechanical tuning of poly-
electrolyte multilayers, Biomaterials 30 (2009) 1113 1120.
[148] D.E. Discher, P. Jamaney, Y.L. Wang, Tissue cells feel and respond to the stiffness of the substrate,
Science 310 (2005) 1139 1143.
[149] H.F. Cui, et al., Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues,
Chem. Res. Toxicity 23 (2010) 1131 1147.
[150] G. Kasaliwal, A. Godel, P. Potschke, Influence of processing conditions in small-scale melt mixing and
compression molding on the resistivity and morphology of polycarbonate MWNT composites, J. Appl.
Polym. Sci. 112 (2009) 3494 3509.
[151] A. Celzard, et al., Critical concentration in percolating systems containing a high-aspect-ratio filler,
Phys. Rev. B 53 (1996) 6209 6214.
[152] P. Potschke, et al., Melt mixing as method to disperse carbon nanotubes into thermoplastic polymers,
Fullerenes, Nanotubes, Carbon Nanostruct. 13 (2005) 211 214.
[153] F.H. Gojny, et al., Evaluation and identification of electrical and thermal conduction mechanisms in
carbon nanotube/epoxy composites, Polymer 47 (2006) 2036 2045.
[154]
I. Alig, D. Lellinger, T. Skipa, Influence of thermo-rheological history on electrical and rheological
properties of polymer
carbon nanotube composite,
in: T.M.a.P. Potschke (Ed.), Polymer
Carbon
328.
[155] P. Bonnet, et al., Thermal properties and percolation in carbon nanotube-polymer composites, Appl.
Phys. Lett. 91 (2007) 210910.
[156] J. Black, T.J. Baranowski, C.T. Brighton, Electrochemical aspects of d.c. stimulation of osteogenesis,
Bioeletrochem. Bioenerg. 12 (1984) 323 327.
[157] R. Korenstein, et al., Capacitative pulsed electric simulation of bone cells. Induction of cyclic-AMP
and DNA synthesis, Biochem. Biophys. Acta 803 (1984) 302 307.
[158] R.A. Luben, et al., Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of
responses to parathyroid hormone by low-frequency fields, Proc. Nat. Acad. Sci. U.S.A. 79 (1982)
4180 4184.
[159] G.A. Rodan, L.A. Bourret, L.A. Norton, DNA synthesis in cartilage cells in stimulated by oscillating
electric fields, Science 199 (1978) 690 692.
[160] Z.B. Friedenberg, et al., Stimulation of fracture healing by direct current in rabbit fibula, J. Bone Joint
Surg. 53A (1971) 1400 1408.
[161] Z.B. Friedenberg, et al., The response of non-traumatized bone to direct current, J. Bone Joint Surg.
56A (1974) 1023 1030.
[162] D.D. Levy, B. Rubin, Inducing bone growth in vivo by pulse stimulation, Clin. Orthop. 88 (1972)
218 222.
[163] B.T. O'Connor, et al., Effect of electric current in bone in vivo, Nature 222 (1969) 162 163.
Nanotube Composites, Woodhead, Cambridge, UK, 2011, pp. 295
Search WWH ::




Custom Search