Biomedical Engineering Reference
In-Depth Information
[13] S.P. Nukavarapu, S.G. Kumbar, J.L. Brown, N.R. Krogman, A.L. Weikel, M.D. Hindenlang, et al.,
Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering,
Biomacromolecules 9 (2008) 1818 1825.
[14] M. Sato, M.A. Sambito, A. Aslani, N.M. Kalkhoran, E.B. Slamovich, T.J. Webster, Increased osteoblast
functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium,
Biomaterials 27 (2006) 2358
2369.
[15] E.S. Thian, J. Huang, S.M. Best, Z.H. Barber, R.A. Brooks, N. Rushton, et al., The response of osteoblasts
to nanocrystalline silicon-substituted hydroxyapatite thin films, Biomaterials 27 (2006) 2692 2698.
[16] K.U. Lewandrowski, S.P. Bondre, D.L. Wise, D.J. Trantolo, Enhanced bioactivity of a poly(propylene
fumarate) bone graft substitute by augmentation with nano-hydroxyapatite, Biomed. Mater. Eng.
13 (2003) 115 124.
[17] E.S. Thian, Z. Ahmad, J. Huang, M.J. Edirisinghe, S.N. Jayasinghe, D.C. Ireland, et al., Bioactivity of
nanoapatite produced by electrohydrodynamic atomization, J. Bionanosci. 1 (2007) 60 63.
[18] S. Pezzatini, R. Solito, L. Morbidelli, S. Lamponi, E. Boanini, A. Bigi, et al., The effect of hydroxyapatite
nanocrystals on microvascular endothelial cell viability and functions, J. Biomed. Mater. Res. A 76A
(2006) 656 663.
[19] S. Pezzatini, L. Morbidelli, R. Solito, E. Paccagnini, E. Boanini, A. Bigi, et al., Nanostructured HA
crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angio-
genesis, Bone 41 (2007) 523 534.
[20] S.I. Stupp, G.W. Ciegler, Organoapatites: materials for artificial bone. I. Synthesis and microstructure,
J. Biomed. Mater. Res. 26 (1992) 169 183.
[21] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced osteoclast-like cell functions
on nanophase ceramics, Biomaterials 22 (2001) 1327 1333.
[22] J. Huang, S.M. Best, W. Bonfield, R.A. Brooks, N. Rushton, S.N. Jayasinghe, et al., In vitro assessment
of the biological response to nanosized hydroxyapatite, J. Mater. Sci. Mater. Med. 15 (2004) 441 445.
[23] G. Colon, B.C. Ward, T.J. Webster, Increased osteoblast and decreased Staphylococcus epidermidis
functions on nanophase ZnO and TiO 2 , J. Biomed. Mater. Res. A 78 (2006) 595 604.
[24] T.J. Webster, E.L. Hellenmeyer, R.L. Price, Increased osteoblast functions on theta 1 delta nanofiber alu-
mina, Biomaterials 26 (2005) 953
960.
[25] W. Paul, C.P. Sharma, Nanoceramic matrices: biomedical applications, Am. J. Biochem. Biotechnol.
2 (2006) 41 48.
[26] F.X. Huber, N. McArthur, J. Hillmeier, H.J. Kock, M. Baier, M. Diwo, et al., Void filling of tibia compres-
sion fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a
hydroxyapatite ceramic core: first clinical results, Arch. Orthop. Trauma Surg. 126 (2006) 533 540.
[27] R. Smeets, G. Jelitte, M. Heiland, A. Kasaj, M. Grosjean, D. Riediger, et al., Hydroxylapatit-
Knochenersatzmaterial (Ostim s ) bei der Sinusbodenelevation, Schweiz Monatsschr. Zahnmed. 118
(2008) 203 208.
[28] K.L. Gerlach, D. Niehues, Die Behandlung der Kieferzysten mit einem neuartigen nanopartikul¨ren
Hydroxylapatit, Mund Kiefer GesichtsChir 11 (2007) 131 137.
[29] F. Schwarz, K. Bieling, T. Latz, E. Nuesry, J. Becker, Healing of intrabony periimplantitis defects following
application of a nanocrystalline hydroxyapatite (Ostim t ) or a bovine-derived xenograft (Bio-Oss t )incom-
bination with a collagen membrane (Bio-Gide t ). A case series, J. Clin. Periodontol. 33 (2006) 491 499.
Materials 2 (2009) 2037
[30] F.P. Strietzel, P.A. Reichart, H.L. Graf, Lateral alveolar ridge augmentation using a synthetic nano-
crystalline hydroxyapatite bone substitution material (Ostim s ). Preliminary clinical and histological
results, Clin. Oral Implants Res. 18 (2007) 743 751.
Search WWH ::




Custom Search