Biomedical Engineering Reference
In-Depth Information
[45] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26
(2005) 5474 5491.
[46] L.F. Peltier, The use of plaster of Paris to fill defects in bone, Clin. Orthopedics 21 (1961) 1 29.
[47] M.P. Sidqui, P. Collin, C. Vitte, N. Forest, Osteoblast adherence and resorption activity of isolated osteo-
clasts on calcium sulphate hemihydrate, Biomaterials 16 (1995) 1327
1332.
[48] J. Bateman, G. Intini, J. Margarone III, S. Goodloe III, P. Bush, S.E. Lynch, et al., Platelet-derived
growth factor enhancement of two alloplastic bone matrices, J. Periodontol. 76 (2005) 1833 1841.
[49] Y.B. Park, K. Mohan, A. Al-Sanousi, B. Almaghrabi, R.J. Genco, M.T. Swihart, et al., Synthesis and
characterization of nanocrystalline calcium sulfate for use in osseous regeneration, Biomed. Mater. 6
(2011) 055007.
[50] B. Salvadori, G. Capitani, M. Mellini, L. Dei, A novel method to prepare inorganic water-soluble nano-
crystals, J. Colloid Interface Sci. 298 (2006) 487 490.
[51] Q. Zhang, Q.F. He, T.H. Zhang, X.L. Yu, Q. Liu, F.L. Deng, Improvement in the delivery system of
bone morphogenetic protein-2: a new approach to promote bone formation, Biomed. Mater. 7 (2012)
045002.
[52] J.O. Hollinger, C.E. Hart, S.N. Hirsch, S. Lynch, G.E. Friedlaender, Recombinant human platelet derived
growth factor: biology and clinical applications, J. Bone Joint Surg. Am. 80 (2008) 48 54.
[53] D.H.R. Kempen, L. Lu, T.E. Hefferan, L.B. Creemers, A. Maran, K.L. Classic, et al., Retention of
in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering,
Biomaterials 29 (2008) 3245 3252.
[54] H. Uludag, T. Gao, T.J. Porter, W. Friess, J.M. Wozney, Delivery systems for BMPs: factors
contributing to protein retention at an application site, J. Bone Joint Surg. Am. 83A (2001) S128 S135.
[55] M. Nakashima, A. Reddi, The application of bone morphogenetic proteins to dental tissue engineering,
Nat. Biotechnol. 21 (2003) 1025 1032.
[56] H. Perinpanayagam, T. Martin, V. Mithal, M. Dahman, N. Marzec, J. Lampasso, et al., Alveolar bone
osteoblast differentiation and Runx2/Cbfa1 expression, Arch. Oral Biol. 51 (2006) 406 415.
[57] M.A. Rauschmann, T.A. Wichelhaus, V. Stirnal, E. Dingeldein, L. Zichner, R. Schnettler,
Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for
local delivery of antibiotics in bone infections, Biomaterials 26 (2005) 2677
2684.
[58] A.D. Augst, H.J. Kong, D.I. Mooney, Alginate hydrogels as biomaterials, Macromol. Biosci. 6 (2006)
623 633.
[59] X. Qi, J. Ye, Y. Wang, Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with
oriented pore structure for bone tissue engineering, J. Biomed. Mater. Res. 89A (2009) 980 987.
[60] H.-R. Lin, Y.-J. Yeh, Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering:
preparation, characterization, and in vitro studies, J. Biomed. Mater. Res. 71B (2004) 52 65.
[61] Z. Mazor, R. Horowitz, J. Ricci, H. Alexander, I. Chesnoiu-Matei, S. Mamidwar, The use of novel nano-
crystalline calcium sulfate for bone regeneration in extraction socket, J. Implant Adv. Clin. Dent. 3
(2011) 39 49.
[62] R. O'Keefe, J. Mao, Bone tissue engineering and regeneration: from discovery to the clinic—an
overview, Tissue Eng. Part B 17 (2011) 389 392.
[63] C.H. Evans, Barriers to the clinical translation of orthopedic tissue engineering, Tissue Eng. Part B 17
(2011) 437 441.
Search WWH ::




Custom Search