Biomedical Engineering Reference
In-Depth Information
[23] W. Zhang, S.S. Liao, F.Z. Cui, Hierarchical self-assembly of nanofibrils in mineralized collagen, Chem.
Mater. 15 (2003) 3221 3226.
[24] C. Du, F.Z. Cui, W. Zhang, Q.L. Feng, X.D. Zhu, K. de Groot, Formation of calcium phosphate/collagen
composites through mineralization of collagen matrix, J. Biomed. Mater. Res. 50 (2000) 518 527.
[25] S.S. Liao, F.Z. Cui, W. Zhang, Q.L. Feng, Hierarchically biomimetic bone scaffold materials: nano-HA/
collagen/PLA composite, J. Biomed. Mater. Res. B Appl. Biomater. 69 (2004) 158
165.
[26] Z. Chen, H. Liu, X. Liu, F.Z. Cui, Injectable calcium sulfate/mineralized collagen-based bone repair
materials with regulable self-setting properties, J. Biomed. Mater. Res. Part A 99A (2011) 554 563.
[27] X. Yu, L. Xu, L.Y. Bi, Y. Qu, D.B. Zheng, X. Cao, Posterolateral fusion using nano-crystal/collagen
bone materials in lumbar spine, Orthop. J. China 13 (2005) 586 588.
[28] K. Gkioni, S.C.G. Leeuwenburgh, T.E.L. Douglas, A.G. Mikos, J.A. Jansen, Mineralization of hydrogels
for bone regeneration, Tissue Eng.: Part B 16 (2010) 577 585.
[29] H. Tamura, T. Furuike, S.V. Nair, R. Jayakumar, Biomedical applications of chitin hydrogel membranes
and scaffolds, Carbohydr. Polym. 84 (2011) 821 825.
[30] B.M. Chesnutt, Y. Yuan, K. Buddington, W.O. Haggard, J.D. Bumgardner, Composite chitosan/nano-
hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone forma-
tion in vivo, Tissue Eng. Part A 15 (2009) 2571 2579.
[31] A. Di Martino, M. Sittinger, M.V. Risbud, Chitosan: a versatile biopolymer for orthopaedic tissue-
engineering, Biomaterials 26 (2005) 5983 5990.
[32] E. Khor, Chitosan: Fulfilling a Biomaterial's Promise, Elsevier, Oxford, UK, 2001.
[33] R. Jayakumar, K.P. Chennazhi, S. Srinivasan, S.V. Nair, T. Furuike, H. Tamura, Chitin scaffolds in tis-
sue engineering, Int. J. Mol. Sci. 12 (2011) 1876 1987.
[34] S. Higashi, T. Yamamuro, T. Nakamura, Y. Ikada, S.H. Hyon, K. Jamshidi, Polymer-hydroxyapatite
composites for biodegradable bone filler, Biomaterials 7 (1986) 183 187.
[35] M. Ito, In vitro properties of a chitosan-bonded hydroxyapatite bone-filling paste, Biomaterials 12
(1991) 41 45.
[36] A.C.A. Wan, E. Khor, G.W. Hastings, Hydroxyapatite modified chitin as potential hard tissue substitute
material, J. Biomed. Mater. Res. 38 (1997) 235
241.
[37] H.W. Kim, H.E. Kim, V. Salihi, Stimulation of osteoblast responses to biomimetic nanocomposites of
gelatin
5230.
[38] G. Wei, P. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone
tissue engineering, Biomaterials 25 (2004) 4749 4757.
[39] M. Yamaguchi, H. Oishi, Y. Suketa, Stimulatory effect of zinc on bone formation in tissue culture,
Biochem. Pharmacol. 22 (1987) 4007 4012.
[40] D. Chen, L. Waite, W.M. Pierce Jr, In vitro effects of zinc on markers of bone formation, Biol. Trace
Elem. Res. 68 (1999) 225 234.
[41] A. Tripathi, S. Saravanan, S. Pattnaik, A. Moorthi, N.C. Partridge, N. Selvamurugan, Bio-composite
scaffolds containing chitosan/nano-hydroxyapatite/nano-copper zinc for bone tissue engineering, Int. J.
Biol. Macromol. 50 (2012) 294 299.
[42] M. Peter, N. Ganesh, N. Selvamurugan, S.V. Nair, T. Furuike, H. Tamura, et al., Preparation and charac-
terization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications,
Carbohydr. Polym 80 (2010) 687 694.
[43] M. Vogel, C. Voigt, U.M. Gross, C.M. Mai, In vivo comparison of bioactive glass particles in rabbits,
Biomaterials 22 (2001) 357 362.
[44] W. Xia, J. Chang, Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-
mediated sol gel method, Mater. Lett. 61 (2007) 3251 3253.
hydroxyapatite for tissue engineering scaffolds, Biomaterials 26 (2005) 5221
Search WWH ::




Custom Search