Biomedical Engineering Reference
In-Depth Information
[5] V. Uskokovic, Nanotechnologies: what we do not know, Technol. Soc. 29 (2007) 43 61.
[6] V. Uskokovic, Nanomaterials and nanotechnologies: approaching the crest of this big wave, Curr.
Nanosci. 4 (2008) 119 129.
[7] C. Buzea, I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity, Biointerphases
2 (4) (2007) 17
71, doi:10.1116/1.2815690.
[8] Study sizes up nanomaterial toxicity, Chem. Eng. News 86 (35) (2008) 44.
[9] Y. George, J.R. Onoda, L. Larry, L.L. Hench, Ceramic Processing Before Firing, Wiley & Sons,
New York, NY, 1979, 0471654108.
[10] I.A. Aksay, F.F. Lange, B.I. Davis, Uniformity of Al 2 O 3 ZrO 2 composites by colloidal filtration, J. Am.
Ceram. Soc. 66 (10) (1983) 190.
[11] G.V. Franks, F.F. Lange, Plastic-to-brittle transition of saturated, alumina powder compacts, J. Am.
Ceram. Soc. 79 (12) (1996) 3161.
[12] A.G. Evans, R.W. Davidge, The strength and fracture of fully dense polycrystalline magnesium oxide,
Phil. Mag. 20 (164) (1969) 373.
[13] F.F. Lange, M. Metcalf, Processing-related fracture origins: II, agglomerate motion and cracklike internal
surfaces caused by differential sintering, J. Am. Ceram. Soc. 66 (6) (1983) 398.
[14] A.G. Evans, Considerations of inhomogeneity effects in sintering, J. Am. Ceram. Soc. 65 (10)
(1987) 497.
[15] G.M. Whitesides, et al., Molecular self-assembly and nanochemistry: a chemical strategy for the
synthesis of nanostructures, Science 254 (5036) (1991) 1312 1319.
[16] D.M. Dubbs, I.A. Aksay, Self-assembled ceramics, Ann. Rev. Phys. Chem. 51 (2000) 601 622.
[17] S. Iijima, C. Brabec, A. Maiti, Structural flexibility of carbon nanotubes, J. Chem. Physiol. 104 (5)
(1996) 2089 2092.
[18] R. Zsigmondy, Colloids and the ultramicroscope, Wiley & Sons, New York, NY, 1914.
[19] A.S. Dukhin, P.J. Goetz, Ultrasound for Characterizing Colloids, Elsevier, 2002.
[20] K. Jayraman, M. Kotaki, Y. Zhang, et al., Recent advances in polymer nanofibers, J. Nanosci.
Nanotechnol. 4 (52) (2004) 65 67.
[21] R.L. Price, K. Ellison, K.M. Haberstroh, et al., Nanometer surface roughness increases select osteoblasts
adhesion on carbon nanofiber compacts, J. Biomed. Mater. 70 (129) (2004) 38
40.
[22] D.S. Katti, K.W. Robinson, C.T. Laurenci, Bioresorbable nanofiber based systems for wound healing
and drug delivery: optimization of fabrication parameters, J. Biomed. Mater. 70 (282) (2004) 96 97.
[23] E.M. Reifman, Diamond teeth, in: B.C. Crandall (Ed.), Nanotechnology: Molecular Speculations on
Global Abundance, MIT Press, Cambridge, MA, 1996, p. 81.
[24] S.A. Saunders, Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite
restoratives and biomimetics, Clin. Cosmet. Invest. Dent. 1 (2009) 47 61.
[25] J.H. Kinney, S. Habelitz, S.J. Marshall, G.W. Marshall, The importance of intrafibrillar mineralization of
collagen on the mechanical properties of dentin, J. Dent. Res. 82 (2003) 957 961.
[26] V. Uskokovic, On the light doves and learning on mistakes, Axiomathes 19 (2009) 17 50.
[27] V. Uskokovic, On science of metaphors and the nature of systemic reasoning, World Futures 65 (2009)
241 269.
[28] R.W. Siegel, G.E. Fougere, Nanostruct. Mater. 6 (1995) 205.
[29] J.W. Freeman, L.D. Wright, C.T. Laurencin, S. Bhattacharyya, in: K.E. Gonsalves, C.R. Halberstadt,
C.T. Laurencin, L.S. Nair (Eds.), Biomedical Nanostructures, Wiley & Sons, NJ, 2008, pp. 3 24.
[30] B.D. Fahlman, Materials Chemistry, Springer, Dordrecht, The Netherlands, 2007.
[31] R.H. Selwitz, A.I. Ismail, N.B. Pitts, Dental caries, Lancet 369 (2007) 51 59.
[32] N. Takahashi, B. Nyvad, Caries ecology revisited: microbial dynamics and the caries process, Caries
Res. 42 (2008) 409 418.
Search WWH ::




Custom Search