Biomedical Engineering Reference
In-Depth Information
[33] S. Filoche, L Wong, C.H. Sissons, Oral biofilms: emerging concepts in microbial ecology, J. Dent. Res.
89 (2010) 8 18.
[34] C. Hannig, M. Hannig, The oral cavity—a key system to understand substratum-dependent bioadhesion
on solid surfaces in man, Clin. Oral Investig. 13 (2009) 123 139.
[35] P.E. Kolenbrander, et al., Bacterial
interactions and successions during plaque development,
79.
[36] M. Hannig, C. Hannig, Nanomaterials in preventive dentistry, Nature Nanotechnol 5 (8) (2010)
565 569.
[37] D. Khang, J. Carpenter, Y.W. Chun, R. Pareta, T.J. Webster, Nanotechnology for regenerative medicine,
Biomed. Microdevices (2008) doi:10.1007/s10544-008-9264 6.
[38] R. Blossey, Self-cleaning surfaces—virtual realities, Nat. Mater. 2 (2003) 301 306.
[39] A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth, W. Barthlott, The dream of staying clean: lotus and bio-
mimetic surfaces, Bioinspir. Biomim. 2 (2007) 126 134.
[40] M. Hannig, L. Kriener, W. Hoth-Hannig, C. Becker-Willinger, H. Schmidt, Influence of nanocomposite
surface coating on biofilm formation in situ, J. Nanosci. Nanotechnol. 7 (2007) 4642 4648.
[41] R.E. Baier, Surface behaviour of biomaterials: the theta surface for biocompatibility, J. Mater. Sci.
Mater. Med. 17 (2006) 1057 1062.
[42] C. Rahiotis, G. Vougiouklakis, G. Eliades, Characterization of oral films formed in the presence of a
CPP ACP agent: an in situ study, J. Dent. 36 (2008) 272 280.
[43] E.C. Reynolds, F. Cai, P. Shen, G.D. Walker, Retention in plaque and remineralization of enamel lesions
by various forms of calcium in a mouthrinse or sugar-free chewing gum, J. Dent. Res. 82 (2003)
206 211.
[44] E.C. Reynolds, Calcium phosphate-based remineralization systems: scientific evidence? Aust. Dent. J.
53 (2008) 268 273.
[45] E.C. Reynolds, Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized
calcium phosphate solutions, J. Dent. Res. 76 (1997) 1587 1595.
[46] K.J. Cross, N.L. Huq, E.C. Reynolds, Casein phosphopeptides in oral health—chemistry and clinical
applications, Curr. Pharm. Des. 13 (2007) 793
Periodontology 42 (2006) 47
800.
[47] R.K. Rose, Binding characteristics of Streptococcus mutans for calcium and casein phosphopeptide,
Caries. Res. 34 (2000) 427
431.
[48] S.C. Venegas, J.M. Palacios, M.C. Apella, P.J. Morando, M.A. Blesa, Calcium modulates interactions
between bacteria and hydroxyapatite, J. Dent. Res. 85 (2006) 1124 1128.
[49] P.S.K. Lucarotti, R.L. Holder, F.J.T. Burke, Outcome of direct restorations placed within the general
dental services in England and Wales. Part 1: Variation by type of restoration and re-intervention,
J. Dent. 33 (2005) 805 815.
[50] R.L. Bowen, Properties of a silica-reinforced polymer for dental restorations, J. Am. Dental. Assoc. 66
(1963) 57 64.
[51] S. Pamela, J.S. Stein, J.E. Haubenreicb, P.B. Osborne, Composite resin in medicine and dentistry,
J. Long-Term Eff. Med. Implants 15 (2005) 641 654.
[52] S.S.H. Mirsasaani, M. Hajipour Manjili, N. Baheiraei, Dental nanomaterials, in: B. Reddy (Ed.),
Advances in Diverse Industrial Applications of Nanocomposites, INTECH, Vienna, Austria, 2011,
pp. 441 474.
[53] D.A. Terry, Direct applications of a nanocomposite resin system. Part 2: Procedures for anterior restora-
tions, Pract. Proced. Aesthet. Dent. 16 (2004) 677 684.
[54] D. Skrtic, A.W. Aailer, S. Takagi, J.M. Antonucci, E.D. Eanes, Quantitative assessment of the efficacy
of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artifi-
cially produced in bovine enamel, J. Dent. Res. 75 (1996) 1679 1686.
Search WWH ::




Custom Search