Biomedical Engineering Reference
In-Depth Information
[12] S. Oh, C. Daraio, L.H. Chen, T.R. Pisanic, R.R. Finones, S. Jin, Significantly accelerated osteoblast cell
growth on aligned TiO 2 nanotubes, J. Biomed. Mater. Res. A 78A (2006) 97 103.
[13] L.M. Bjursten, L. Rasmusson, S. Oh, G.C. Smith, K.S. Brammer, S. Jin, Titanium dioxide nanotubes
enhance bone bonding in vivo, J. Biomed. Mater. Res. A 92 (2010) 1218 1224.
[14] C. von Wilmowsky, S. Bauer, R. Lutz, M. Meisel, F.W. Neukam, T. Toyoshima, et al., In vivo evalua-
tion of anodic TiO 2 nanotubes: an experimental study in the pig, J. Biomed. Mater. Res. B Appl.
Biomater. 89 (2009) 165 171.
[15] C. von Wilmowsky, S. Bauer, S. Roedl, F.W. Neukam, P. Schmuki, K.A. Schlegel, The diameter of
anodic TiO 2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2
expression in vivo, Clin. Oral Implants Res. 23 (2012) 359 366.
[16] N. Wang, H. Li, W. Lu, J. Li, J. Wang, Z. Zhang, et al., Effects of TiO 2 nanotubes with different
diameters on gene expression and osseointegration of implants in minipigs, Biomaterials 32 (2011)
6900 6911.
[17] L. Zhao, P.K. Chu, Y. Zhang, Z. Wu, Antibacterial coatings on titanium implants, J. Biomed. Mater.
Res. B Appl. Biomater. 91 (2009) 470 480.
[18] T.P. Schmalzried, H.C. Amstutz, M.K. Au, F.J. Dorey, Etiology of deep sepsis in total hip arthroplasty.
The significance of hematogenous and recurrent infections, Clin. Orthop. Rel. Res. 280 (1992) 200 207.
[19] T.F. Mah, G.A. O'Toole, Mechanisms of biofilm resistance to antimicrobial agents, Trends Microbiol. 9
(2001) 34 39.
[20] Y. Xin, J. Jiang, K. Huo, T. Hu, P.K. Chu, Bioactive SrTiO 3 nanotube arrays: strontium delivery plat-
form on Ti-based osteoporotic bone implants, ACS Nano 3 (2009) 3228 3234.
[21] L. Yang, S. Luo, Q. Cai, S. Yao, A review on TiO 2 nanotube arrays: fabrication, properties, and sensing
applications, Chin. Sci. Bull. 55 (2010) 331 338.
[22] K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, et al., Highly-ordered
TiO 2 nanotube arrays up to 220 μ m in length: use in water photoelectrolysis and dye-sensitized solar
cells, Nanotechnology 18 (2007) 065707.
[23] C. Yao, E.B. Slamovich, T.J. Webster, Enhanced osteoblast functions on anodized titanium with
nanotube-like structures, J. Biomed. Mater. Res. A 85 (2008) 157 166.
[24] L. Peng, M.L. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, The effect of TiO 2 nanotubes on endo-
thelial function and smooth muscle proliferation, Biomaterials 30 (2009) 1268
1272.
[25] J. Park, S. Bauer, K. von der Mark, P. Schmuki, Nanosize and vitality: TiO 2 nanotube diameter directs
cell fate, Nano Lett. 7 (2007) 1686 1691.
[26] K.C. Popat, M. Eltgroth, T.J. Latempa, C.A. Grimes, T.A. Desai, Decreased Staphylococcus epidermis
adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes, Biomaterials 28
(2007) 4880 4888.
[27] R.E. Baier, A.E. Meyer, C.K. Akers, J.R. Natiella, M. Meenaghan, J.M. Carter, Degradative effects of
conventional steam sterilization on biomaterial surfaces, Biomaterials 3 (1982) 241 245.
[28] Y. Han, D. Chen, J. Sun, Y. Zhang, K. Xu, UV-enhanced bioactivity and cell response of micro-arc oxi-
dized titania coatings, Acta Biomater. 4 (2008) 1518 1529.
[29] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, et al., Photogeneration of
highly amphiphilic TiO 2 surfaces, Adv. Mater. 10 (1998) 135 138.
[30] S. Oh, K.S. Brammer, K.-S. Moon, J.-M. Bae, S. Jin, Influence of sterilization methods on cell behavior
and functionality of osteoblasts cultured on TiO 2 nanotubes, Mater. Sci. Eng. C 31 (2011) 873 879.
[31] L. Zhao, S. Mei, W. Wang, P.K. Chu, Y. Zhang, Z. Wu, Suppressed primary osteoblast functions on
nanoporous titania surface, J, Biomed. Mater. Res. A 96 (2011) 100 107.
[32] B.S. Smith, S. Yoriya, T. Johnson, K.C. Popat, Dermal fibroblast and epidermal keratinocyte functional-
ity on titania nanotube arrays, Acta Biomater. 7 (2011) 2686 2696.
Search WWH ::




Custom Search