Biomedical Engineering Reference
In-Depth Information
MSC attachment and spread and induce MSC osteogenic differentiation. In addition, the NT
Zn
samples also exhibit excellent antibacterial effects to prevent bacterial colonization.
17.6 Conclusions
Many reports have revealed the effectiveness of NTs in promoting the functions of osteoblasts and
MSCs and MSC osteogenic differentiation in vitro and enhancing implant osseointegration in vivo.
Our studies demonstrate the suitability of the NTs to load and deliver some inorganic bioactive
agents such as Ag, Sr, and Zn to achieve antibacterial- and/or osteogenesis-inducing abilities. The
NT surfaces, especially those loaded with suitable inorganic bioactive agents, have huge promise in
fabricating dental implants with better clinical performance.
Acknowledgments
This work was jointly supported by National Natural Science Foundation of China Nos. 50902104 and
31200716, City University of Hong Kong Applied Research Grant (ARG) No. 9667066, and the Opening
Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL201103SIC).
References
[1] J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone,
Med. Eng. Phys. 20 (1998) 92 102.
[2] L. Zhao, L. Liu, Z. Wu, Y. Zhang, P.K. Chu, Effects of micropitted/nanotubular titania topographies on
bone mesenchymal stem cell osteogenic differentiation, Biomaterials 33 (2012) 2629 2641.
[3] L. Zhao, S. Mei, P.K. Chu, Y. Zhang, Z. Wu, The influence of hierarchical hybrid micro/nano-textured
titanium surface with titania nanotubes on osteoblast functions, Biomaterials 31 (2010) 5072 5082.
[4] L. Zhao, S. Mei, W. Wang, P.K. Chu, Z. Wu, Y. Zhang, The role of sterilization in the cytocompatibility
of titania nanotubes, Biomaterials 31 (2010) 2055 2063.
[5] L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, et al., Antibacterial nano-structured titania coating
incorporated with silver nanoparticles, Biomaterials 32 (2011) 5706 5716.
[6] M. Tzaphlidou, The role of collagen in bone structure: an image processing approach, Micron 36 (2005)
593 601.
[7] G.A. Crawford, N. Chawla, K. Das, S. Bose, A. Bandyopadhyay, Microstructure and deformation behav-
ior of biocompatible TiO 2 nanotubes on titanium substrate, Acta Biomater. 3 (2007) 359 367.
[8] S.H. Oh, R.R. Finones, C. Daraio, L.H. Chen, S.H. Jin, Growth of nano-scale hydroxyapatite using
chemically treated titanium oxide nanotubes, Biomaterials 26 (2005) 4938 4943.
[9] A. Pittrof, S. Bauer, P. Schmuki, Micropatterned TiO 2 nanotube surfaces for site-selective nucleation of
hydroxyapatite from simulated body fluid, Acta Biomater. 7 (2011) 424 431.
[10] K.S. Brammer, S. Oh, C.J. Cobb, L.M. Bjursten, H.V. Heyde, S. Jin, Improved bone-forming functional-
ity on diameter-controlled TiO 2 nanotube surface, Acta Biomater. 5 (2009) 3215 3223.
[11] K. Das, S. Bose, A. Bandyopadhyay, TiO 2 nanotubes on Ti: influence of nanoscale morphology on bone
cell-materials interaction, J. Biomed. Mater. Res. A 90 (2009) 225 237.
Search WWH ::




Custom Search