Biomedical Engineering Reference
In-Depth Information
[25] W.H. Bowen, H. Koo, Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular
matrix formation of cariogenic biofilms, Caries Res. 45 (2011) 69 86.
[26] C. Hannig, A. Ruggeri, B. Al-Khayer, P. Schmitz, B. Spitzmuller, D. Deimling, et al., Electron micro-
scopic detection and activity of glucosyltransferase B, C, and D in the in situ formed pellicle, Arch. Oral
Biol. 53 (2008) 1003
1010.
[27] J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial biofilms: a common cause of persistent infec-
tions, Science 284 (1999) 1318 1322.
[28] P.D. Marsh, Controlling the oral biofilm with antimicrobials, J. Dent. 38 (Suppl. 1) (2010) S11 S15.
[29] P.D. Marsh, D.J. Bradshaw, Dental plaque as a biofilm, J. Ind. Microbiol. 15 (1995) 169 175.
[30] V. Imbeni, J.J. Kruzic, G.W. Marshall, S.J. Marshall, R.O. Ritchie, The dentin-enamel junction and the
fracture of human teeth, Nat. Mater. 4 (2005) 229 232.
[31] L.E. Bertassoni, S. Habelitz, J.H. Kinney, S.J. Marshall, G.W. Marshall Jr., Biomechanical perspective
on the remineralization of dentin, Caries Res. 43 (2009) 70 77.
[32] L.J. Wang, X.Y. Guan, H.Y. Yin, J. Moradian-Oldak, G.H. Nancollas, Mimicking the self-organized
microstructure of tooth enamel, J. Phys. Chem. C 112 (2008) 5892 5899.
[33] P. Tschoppe, D.L. Zandim, P. Martus, A.M. Kielbassa, Enamel and dentin remineralization by nano-
hydroxyapatite toothpastes, J. Dent. 39 (2011) 430 437.
[34] Y.J. Tang, Y.F. Tang, C.T. Lv, Z.H. Zhou, Preparation of uniform porous hydroxyapatite biomaterials
by a new method, Appl. Surf. Sci. 254 (2008) 5359 5362.
[35] L.R. Mo, Y.B. Li, G.Y. Lv, J.D. Li, L. Zhang, Comparison of hydroxyapatite synthesized under different
conditions, Mater. Sci. Forum 510 511 (2006) 814 817.
[36] M.Y. Ma, Y.J. Zhu, L. Li, S.W. Cao, Nanostructured porous hollow ellipsoidal capsules of hydroxyapa-
tite and calcium silicate: preparation and application in drug delivery, J. Mater. Chem. 18 (2008)
2722 2727.
[37] L. Li, H.H. Pan, J.H. Tao, X.R. Xu, C.Y. Mao, X.H. Gu, et al., Repair of enamel by using hydroxyapa-
tite nanoparticles as the building blocks, J. Mater. Chem. 18 (2008) 4079 4084.
[38] Y.M. Chen, T.F. Xi, Y.P. Lv, Y.D. Zheng, In vitro biological performance of nano-particles on the
surface of hydroxyapatite coatings, Appl. Surf. Sci. 255 (2008) 375
378.
[39] S.H. Jung, E. Oh, K.H. Lee, W. Park, S.H. Jeong, A sonochemical method for fabricating aligned ZnO
nanorods, Adv. Mater. 19 (2007) 749.
[40] E.C. Reynolds, F. Cai, N.J. Cochrane, P. Shen, G.D. Walker, M.V. Morgan, et al., Fluoride and casein
phosphopeptide-amorphous calcium phosphate, J. Dent. Res. 87 (2008) 344 348.
[41] K.J. Cross, N.L. Huq, E.C. Reynolds, Casein phosphopeptides in oral health—chemistry and clinical
applications, Curr. Pharm. Des. 13 (2007) 793 800.
[42] P. Richthammer, M. Bormel, E. Brunner, K.H. van Pee, Biomineralization in diatoms: the role of silaci-
dins, Chembiochem 12 (2011) 1362 1366.
[43] K. Spinde, M. Kammer, K. Freyer, H. Ehrlich, J.N. Vournakis, E. Brunner, Biomimetic silicification of
fibrous chitin from diatoms, Chem. Mater. 23 (2011) 2973 2978.
[44] M. Sumper, E. Brunner, Learning from diatoms: nature's tools for the production of nanostructured
silica, Adv. Funct. Mater. 16 (2006) 17 26.
[45] M. Sumper, E. Brunner, G. Lehmann, Biomineralization in diatoms: characterization of novel polya-
mines associated with silica, FEBS Lett. 579 (2005) 3765 3769.
[46] T. Waltimo, T.J. Brunner, M. Vollenweider, W.J. Stark, M. Zehnder, Antimicrobial effect of nanometric
bioactive glass 45S5, J. Dent. Res. 86 (2007) 754 757.
[47] R. Garcia-Contreras, L. Argueta-Figueroa, C. Mejia-Rubalcava, R. Jimenez-Martinez, S. Cuevas-
Guajardo, P.A. Sanchez-Reyna, et al., Perspectives for the use of silver nanoparticles in dental practice,
Int. Dent. J. 61 (2011) 297 301.
Search WWH ::




Custom Search