Biomedical Engineering Reference
In-Depth Information
References
[1] P. Cleaton-Jones, P. Fatti, Dental caries in children in South Africa and Swaziland: a systematic review
1919 2007, Int. Dent. J. 59 (2009) 363 368.
[2] R.L. Ettinger, Epidemiology of dental caries. A broad review, Dent. Clin. North. Am. 43 (1999)
679 694.
[3] J.M. Sadowsky, R.D. Bebermeyer, G. Gibson, Root caries a review of the etiology, diagnosis, restor-
ative and preventive interventions, Tex. Dent. J. 125 (2008) 1070 1082; quiz 1083 1085.
[4] R. Harris, A.D. Nicoll, P.M. Adair, C.M. Pine, Risk factors for dental caries in young children: a system-
atic review of the literature, Community Dent. Health 21 (2004) 71 85.
[5] T. Jaeggi, A. Lussi, Prevalence, incidence and distribution of erosion, Monogr. Oral Sci. 20 (2006)
44 65.
[6] D. Bartlett, Intrinsic causes of erosion, Monogr. Oral Sci. 20 (2006) 119 139.
[7] N. Schlueter, C. Ganss, S. Potschke, J. Klimek, C. Hannig, Enzyme activities in the oral fluids of
patients suffering from bulimia: a controlled clinical trial, Caries Res. 46 (2012) 130 139.
[8]
J.D. Featherstone, A. Lussi, Understanding the chemistry of dental erosion, Monogr. Oral Sci. 20 (2006)
66
76.
[9] M. Hannig, C. Hannig, Nanomaterials in preventive dentistry, Nat. Nanotechnol. 5 (2010) 565 569.
[10] M. Br¨nnstr¨m, Sensitivity of dentin, Oral Surg. Oral Med. Oral Pathol. 21 (1966) 517 526.
[11] E.C. Reynolds, Calcium phosphate-based remineralization systems: scientific evidence? Aust. Dent. J.
53 (2008) 268 273.
[12] E.C. Reynolds, Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phospho-
peptides: a review, Spec. Care Dent. 18 (1998) 8 16.
[13] R.P. Allaker, The use of nanoparticles to control oral biofilm formation, J. Dent. Res. 89 (2010)
1175 1186.
[14] M. Hannig, C. Hannig, Nanotechnology and its role in caries therapy, Adv. Dent. Res. 24 (2012) 53 57.
[15] C. Hannig, M. Hannig, The oral cavity—a key system to understand substratum-dependent bioadhesion
on solid surfaces in man, Clin. Oral Invest. 13 (2009) 123 139.
[16] C. Hannig, M. Hannig, Natural enamel wear—a physiological source of hydroxylapatite nanoparticles
for biofilm management and tooth repair? Med. Hypotheses 74 (2010) 670 672.
[17] M. Hannig, A. Joiner, The structure, function and properties of the acquired pellicle, Monogr. Oral Sci.
19 (2006) 29 64.
[18] L. Vitkov, M. Hannig, Y. Nekrashevych, W.D. Krautgartner, Supramolecular pellicle precursors, Eur. J.
Oral Sci. 112 (2004) 320 325.
[19] C. Hannig, K. Becker, N. Hausler, W. Hoth-Hannig, T. Attin, M. Hannig, Protective effect of the in situ
pellicle on dentin erosion—an ex vivo pilot study, Arch. Oral Biol. 52 (2007) 444 449.
[20] C. Hannig, D. Berndt, W. Hoth-Hannig, M. Hannig, The effect of acidic beverages on the ultrastructure
of the acquired pellicle—an in situ study, Arch. Oral Biol. 54 (2009) 518 526.
[21] M. Hannig, M. Balz, Influence of in vivo formed salivary pellicle on enamel erosion, Caries Res. 33
(1999) 372 379.
[22] M. Hannig, M. Balz, Protective properties of salivary pellicles from two different intraoral sites on
enamel erosion, Caries Res. 35 (2001) 142
148.
[23] M. Hannig, M. Fiebiger, M. Guntzer, A. Dobert, R. Zimehl, Y. Nekrashevych, Protective effect of the in
situ formed short-term salivary pellicle, Arch. Oral Biol. 49 (2004) 903 910.
[24] C. Hannig, M. Hannig, T. Attin, Enzymes in the acquired enamel pellicle, Eur. J. Oral Sci. 113 (2005)
2 13.
Search WWH ::




Custom Search