Biomedical Engineering Reference
In-Depth Information
[32] G. Minetti, P.S. Low, Erythrocyte signal transduction pathways and their possible functions, Curr. Opin.
Hematol. 4 (1997) 116.
[33] E. Monos, V. Berczi, G. Nadasy, Local control of veins: biomechanical, metabolic, and humoral aspects,
Physiol Rev. 75 (1995) 611.
[34] C.D. Murray, The physiological principle of minimum work applied to the angle of branching of arteries,
J. Gen. Physiol. 9 (7-20-1926) 835.
[35] C.D. Murray, The physiological principle of minimum work: II. Oxygen exchange in capillaries, Proc. Natl.
Acad. Sci. U.S.A 12 (1926) 299.
[36] C.D. Murray, The physiological principle of minimum work: I. The vascular system and the cost of blood
volume, Proc. Natl. Acad. Sci. U.S.A 12 (1926) 207.
[37] C.F. Notarius, S. Magder, Central venous pressure during exercise: role of muscle pump, Can. J. Physiol
Pharmacol. 74 (1996) 647.
[38] M.J. Thubrikar, S.K. Roskelley, R.T. Eppink, Study of stress concentration in the walls of the bovine coronary
arterial branch, J. Biomech. 23 (1990) 15.
[39] J.R. Womersley, Oscillatory flow in arteries: effect of radial variation in viscosity on rate of flow, J. Physiol.
127 (2-28-1955) 38.
[40] K.K. Wu, Platelet activation mechanisms and markers in arterial thrombosis, J. Intern. Med. 239 (1996) 17.
[41] M. Zamir, Shear forces and blood vessel radii in the cardiovascular system, J. Gen. Physiol. 69 (1977) 449.
Search WWH ::




Custom Search