Biomedical Engineering Reference
In-Depth Information
Shetty, S., Ishii,T.K., Krum, D.P. et al. 1996. Microwave applica-
tor design for cardiac tissue ablations. J. Microw. Power
Electromagn. Energy , 31: 59-66.
Stauffer, P.R. 1998. Implantable microwave antennas for thermal
therapy. Proc. SPIE 3249: 38-49.
Stauffer, P.R., Maccarini, P., Arunachalam, K. et al. 2010.
Conformal microwave array (CMA) applicators for hyper-
thermia of diffuse chest wall recurrence. Int. J. Hyperthermia
26: 686-98.
Stuchly, M.A., Kraszewski, A., Stuchly, S.S., and Smith, A.M.
1982. Dielectric properties of animal tissues in vivo at radio
and microwave frequencies: Comparison between species.
Phys. Med. Biol. 27: 927-36.
Trembly, B.S. 1985. The effects of driving frequency and antenna
length on power deposition within a microwave antenna
array used for hyperthermia. IEEE Trans. Biomed. Eng. 32:
152-7.
Tsai, C-F., Tai, C-T., Yu, W-C. et al. 1999. Is 8-mm more effec-
tive than 4-mm tip electrode catheter for ablation of typical
atrial flutter? Circulation 100: 768-71.
Turner, P.F., Tumeh, A., and Schaefermeyer, T. 1989. BSD-2000
approach for deep local and regional hyperthermia: Physics
and technology. Strahlenther. Onkol. 165: 738-41.
Underwood, H.R., Peterson, A.F., and Magin, R.L. 1992. Electric-
field distribution near rectangular microstrip radiators for
hyperthermia heating: Theory versus experiment in water.
IEEE Trans. Biomed. Eng. 39: 146-53.
van der Brink, B.A., Gilbride, C., Aronovitz, M.J. et al. 2000.
Safety and efficacy of a steerable temperature monitoring
microwave catheter system for ventricular myocardial abla-
tion. J. Cardiovasc. Electrophysiol. 11: 305-10.
van der Koijk, J.F., deBree, J., Crezee, J., and Lagendijk, J.J.W.
1997. Numerical analysis of capacitively coupled elec-
trodes for interstitial hyperthermia. Int. J. Hyperthermia 13:
607-19.
van Dijk, J.D.P., Schneider, C.J., van Os, R.M., Blank, L.E., and
Gonzalez, D.G. 1990. Results of deep body hyperthermia with
large waveguide radiators. Adv. Exp. Med. Biol. 267: 315-9.
van Rhoon, G.C., Rietveld, P.J.M., and van der Zee, J. 1998. A 433
MHz lucite cone waveguide applicator for superficial hyper-
thermia. Int. J. Hyperthermia 14: 13-27.
van Vulpen, M., Raaymakers, B.W., Lagendijk, J.J.W. et al. 2002.
Three-dimensional controlled interstitial hyperthermia
combined with radiotherapy for locally advanced prostate
carcinoma—A feasibility study. Int. J. Radiation Oncology
Biol. Phys. 53: 116-26.
Wonnell, T., Stauffer, P., and Langberg, T. 1992. Evaluation of micro-
wave and radiofrequency catheter ablation in a myocardium-
equivalent phantom model. IEEE Trans. Biomed. Eng. 39:
1086-95.
Wust, P., Seebass, M., Nadobny, J., Deuflhard, P., Mönich, G., and
Felix, R. 1996. Simulation studies promote technological
development of radiofrequency phased array hyperthermia.
Int. J. Hyperthermia 12: 477-94.
Wust, P., and Weihrauch, M. 2009. Hyperthermia classic com-
mentary: “Simulation studies promote technological devel-
opment of radiofrequency phased array hyperthermia” by
Peter Wust et al., International Journal of Hyperthermia
1996; 12:477-94. Int. J. Hyperthermia , 25: 529-32.
Zhu X-L., and Gandhi, O.P. 1988. Design of RF needle applica-
tors for optimum SAR distributions in irregularly shaped
tumors. IEEE Trans. Biomed. Eng . 35: 382-8.
Search WWH ::




Custom Search