Biomedical Engineering Reference
In-Depth Information
Kok, H. P., de Greef, M., Wiersma, J., Bel, A., and Crezee, J. 2010.
The impact of the waveguide aperture size of the 3D 70
MHz AMC-8 locoregional hyperthermia system on tumour
coverage. Phys. Med. Biol. 55: 4899-916.
Kroeze, H., Van de Kamer, J. B., De Leeuw, A. A. C., and Lagendijk,
J. J. W. 2001. Regional hyperthermia applicator design using
FDTD modelling. Phys. Med. Biol. 46: 1919-35.
Kroeze, H., van de Kamer, J. B., de Leeuw, A. A. C., Kikuchi,
M., and Lagendijk, J. J. W. 2003. Treatment planning for
capacitive regional hyperthermia. Int. J. Hyperthermia 9:
58-73.
Lazebnik, M., McCartney, L., Popovic, D. et al. 2007. A large-scale
study of the ultrawideband microwave dielectric properties
of normal breast tissue obtained from reduction surgeries.
Phys. Med. Biol. 52: 2637-56.
Lee, E.R., Wilsey, T.R., Tarczy-Homoch, P. et al. 1992. Body con-
formable 915 MHz microstrip array applicators for large
surface area hyperthermia. IEEE Trans. Biomed. Eng. 39:
470-83.
Leybovich, L.B., Dogan, N., and Sethi, A. 2000. A modified
technique for RF-LCF interstitial hyperthermia. Int. J.
Hyperthermia 16: 405-13.
Liem, L.B., Mead, R.H., Shenasa, M., and Kernoff, R. 1996. In
vitro and in vivo results of transcatheter microwave abla-
tion using forward-firing tip antenna design. Pacing Clin.
Electrophysiol. 19: 2004-8.
Lin, J.C. 1999. Catheter microwave ablation therapy for cardiac
arrhythmias. Bioelectromagnetics 20(Suppl 4): 120-32.
Livraghi, T., Goldberg, S.N., Lazzaroni, S. et al. 2000. Hepatocellular
carcinoma: Radio-frequency ablation of medium and large
lesions. Radiology 214: 761-68.
Morita, N., and J. Bach Andersen, J. 1982. Near-field absorp-
tion in a circular cylinder from electric and magnetic line
sources. Bioelectromagnetics 3: 253-74.
Nevels, R.D., Arndt, G.D., Raffoul, G.W., Carl, J.R., and Pacifico,
A. 1998. Microwave catheter design. IEEE Trans. Biomed.
Eng. 45: 885-90.
O'Rourke, A.P.O., Lazebnik, M., Bertram, J.M. et al. 2007.
Dielectric properties of human normal, malignant and cir-
rhotic liver tissue: In vivo and ex vivo measurements from
0.5 to 20 GHz using a precision open-ended coaxial probe.
Phys. Med. Biol. 52: 4707-19.
Paulides, M.M., Bakker, J.F., Chavannes , N. , and Van Rhoon, G.C.
2007. A patch antenna design for application in a phased-
array head and neck hyperthermia applicator. IEEE Trans.
Biomed. Eng. 54: 2057-63.
Paulides, M.M., Bakker, J.F., Linthorst, M. et al. 2010. The clini-
cal feasibility of deep hyperthermia treatment in the head
and neck: New challenges for positioning and temperature
measurement. Phys. Med. Biol . 55: 2465-80.
Paulides, M.M., Vossen, S.H.J.A., Zwamborn, A.P.M., and Van
Rhoon, G.C. 2005. Theoretical investigation into the fea-
sibility to deposit RF energy centrally in the head-and-
neck region. Int. J. Radiation Oncology Biol. Phys . 63:
634-42.
Paulsen, K.D., Geimer, S., Tang, J., and Boyse, W.E. 1999.
Optimization of pelvic heating rate distributions with
electromagnetic phased arrays. Int. J. Hyperthermia 15:
157-86.
Prionas, S.D., Fessenden, P., Kapp, D.S., Goffinet, D.R., and Hahn,
G.M. 1988. Interstitial electrodes allowing longitudinal con-
trol of SAR distributions. In Hyperthermic oncology , Vol. 2
eds. T. Sugahara and M. Saito, 707-10. London: Taylor and
Francis.
Prior, M.V., Lumori, M.L.D., Hand, J.W., Lamaitre, G., Schneider,
C.J., and van Dijk J.D.P. 1995. The use of a current sheet
applicator array for superficial hyperthermia: Incoherent
versus coherent operation. IEEE Trans. Biomed. Eng. 42:
694-8.
Reeves, J. W., Meeson, S., and Birch, M. J. 2005. Effect of insertion
depth on helical antenna performance in a muscle equiva-
lent phantom. Phys. Med. Biol. 50: 2955-65.
Reeves, J.W., Birch, M.J., and Hand, J.W. 2008. Comparison of
simulated and experimental results from helical antennas
within a muscle-equivalent phantom. Phys. Med. Biol. 53:
3057-70.
Rhim, H. 2004. Review of Asian experience of thermal ablation
techniques and clinical practices. Int. J. Hyperthermia 20:
699-712.
Rietveld, P.J.M., van Putten, W.L.J., van der Zee, J., and van
Rhoon, G.C. 1999. Comparison of the clinical effective-
ness of the 433 MHz lucite cone applicator with that of
a conventional waveguide applicator in applications of
superficial hyperthermia. Int. J. Radiat. Oncol. Biol. Phys.
43: 681-7.
Rossetto, F., Diederich, C.J., and Stauffer, P.R. 2000. Thermal and
SAR characterization of multielement dual concentric con-
ductor microwave applicators for hyperthermia, a theoreti-
cal investigation. Med. Phys. 27: 745-53.
Ryan, T.P., Turner, P.F., and Hamilton, B. 2010. Interstitial micro-
wave transition from hyperthermia to ablation: Historical
perspectives and current trends in thermal therapy. Int. J.
Hyperthermia 26: 415-33.
Samaras , T., Rietveld, P.J.M., and van Rhoon , G.C. 2000.
Effectiveness of FDTD in predicting SAR distributions
from the lucite cone applicator. IEEE Trans. Microwave
heory Tech. 48: 2059-63.
Samulski, T.V., Fessenden, P., Lee, E.R., Kapp, D.S., Tanabe, E.,
and McEuen, A. 1990. Spiral microstrip hyperthermia
applicators: Technical design and clinical performance. Int.
J. Radiation Oncol. Biol. Phys. 18: 233-42.
Seebass M., Beck R., Gellermann J., Nadobny J., and Wust, P.
2001. Electromagnetic phased arrays for regional hyper-
thermia optimal frequency and antenna arrangement. Int.
J. Hyperthermia 17: 321-36.
Sherar, M.D., Gladman, A.S., Davidson, S.R., Trachtenberg, J.,
and Gertner, M.R. 2001. Helical antenna arrays for intersti-
tial microwave thermal therapy for prostate cancer: Tissue
phantom testing and simulations for treatment. Phys. Med.
Biol. 46:1905-18.
Search WWH ::




Custom Search