Biomedical Engineering Reference
In-Depth Information
19. Moritz AR. Studies of Thermal Injury III. The Pathology
and Pathogenesis of Cutaneous Burns: An Experimental
Study. American Journal of Pathology . 1947; 23: 915-34.
20. Moritz AR, Henriques FC. Studies in Thermal Injury II:
The Relative Importance of Time and Surface Temperature
in the Causation of Cutaneous Burns. American Journal of
Pathology . 1947; 23: 695-720.
21. Henriques FC, Moritz AR. Studies of Thermal Injury
in the Conduction of Heat to and Through Skin and
the Temperatures Attained Therein: A Theoretical and
Experimental Investigation. American Journal of Pathology .
1947; 23: 531-49.
22. Henriques FC. Studies of Thermal Injury V: The Predictability
and Significance of Thermally Induced Rate Processes Leading
to Irreversible Epidermal Injury. Archives of Pathology . 1947;
43: 489-502.
23. Arrhenius S. Uber die Reaktionsgeschwindigkeit bei der
Inversion von Rohrzucker durch Sauren. Zeitschrift für
Physikalische Chemie . 1889; 4: 226-48.
24. Johnson FH, Eyring H, Stover BJ. The Theory of Rate
Processes in Biology and Medicine . New York: John Wiley &
Sons; 1974.
25. Eyring H, Stearn AE. The Application of the Theory of
Absolute Reaction Rates to Proteins. Chemical Reviews .
1939; 24: 253-70.
26. Fugitt CH. A Rate Process Theory of Thermal Injury. In:
Division WE, editor. Washington, D.C.: Armed Forces
Special Weapons Project; 1955.
27. Diller KR, Klutke GA. Accuracy Analysis of the Henriques
Model for Predicting Thermal Burn Injury. Advances in
Bioheat and Mass Transfer; 1993. ASME, Heat Transfer
Division; 1993, pp. 117-23.
28. Miles CA, Ghelashvili M. Polymer-in-a-Box Mechanism for
the Thermal Stabilization of Collagen Molecules in Fibers.
Biophysics Journal . 1999; 76: 3243-52.
29. Wright NT. On a Relationship Between the Arrhenius
Parameters from Thermal Damage Studies. Journal of
Biomechanical Engineering . 2001; 125(2): 300-4.
30. He X, Bhowmick S, Bischof JC. Thermal Therapy in
Urologic Systems: A Comparison of Arrhenius and Thermal
Isoeffective Dose Models in Predicting Hyperthermic
Injury. Journal of Biomechanical Engineering . 2009; 131.
31. Sapareto SA. Ch. 1: The Biology of Hyperthermia In Vitro.
In: Nussbaum GH, ed. Physical Aspects of Hyperthermia .
New York: Am. Inst. Phys.; 1982.
32. Sapareto SA, Hopwood LE, Dewey WC, Raju MR, Gray
JW. Effects of Hyperthermia on Survival and Progression
of Chinese Hamster Ovary Cells. Cancer Research . 1978;
38(2): 393-400.
33. Beckham JT, Mackanos MA, Crooke C, Takahashi T,
O'Connell-Rodwell C, Contag CH et al. Assessment of
Cellular Response to Thermal Laser Injury Through
Bioluminescence Imaging of Heat Shock Protein 70.
Photochemistry and Photobiology . 2004; 79(1): 76-85.
34. Beckham JT, Wilmink GJ, Mackanos MA, Takahashi K,
Contag CH, Takahashi T et al. Role of HSP70 in Cellular
Thermotolerance. Lasers in Surgery and Medicine . 2008; 40:
704-15.
35. Borrelli MJ, Thompson LL, Cain CA, Dewey WC. Time-
temperature Analysis of Cell Killing of BhK Cells Heated
at Temperatures in the Range of 43.5°C to 57.0°C.
International Journal of Radiation Oncology and Biological
Physics . 1990; 19: 389-99.
36. Przybylska M, Bryszewska M, Kedziora J. Thermosensitivity
of Red Blood Cells from Down's Syndrome Individuals.
Bioelectrochemistry . 2000; 52(2): 239-49.
37. Lepock JR, Frey HE, Bayne H, Markus J. Relationship of
Hyperthermia-induced Hemolysis of Human Erythrocytes
to the Thermal Denaturation of Membrane Proteins.
Biochimie Biophysical Acta . 1989; 980: 191-201.
38. Diller KR. Analysis of Skin Burns. In: Shitzer A, Eberhart
RC, editors. Heat Transfer in Medicine and Biology: Analysis
and Applications . New York: Plenum Press; 1984.
39. Brown SL, Hunt JW, Hill RP. Differential Thermal
Sensitivity of Tumour and Normal Tissue Microvascular
Response During Hyperthermia. International Journal of
Hyperthermia. 1992; 8: 501-4.
40. Pearce JA. Relationship Between Arrhenius Models of
Thermal Damage and the CEM 43 Thermal Dose. Energy-
Based Treatment of Tissue and Assessment V ; 2009; San Jose,
CA. Proceedings of SPIE, Bellingham, WA; p. 718104-1-15.
41. Weaver JA, Stoll AM. Mathematical Model of Skin Exposed to
Thermal Radiation. Aerospace Medicine . 1967; 40(1): 24-30.
42. Breen MS, Breen M, Butts K, Chen L, Saidel GM, Wilson
DL. MRI-guided Thermal Ablation Therapy: Model and
Parameter Estimates to Predict Cell Death from MR
hermometry Images. Annals of Biomedical Engineering .
2007; 35(8): 1391-403.
43. Chen X, Saidel GM. Modeling of Laser Coagulation of
Tissue with MRI Temperature Monitoring. Journal of
Biomechanical Engineering . 2010; 135(6): 064503-1-4.
44. Bhowmick S, Swanlund DJ, Bischof JC. Supraphysiological
Thermal Injury in Dunning AT-1 Prostate Tumor Cells.
Journal of Biomechanical Engineering . 2000; 122(1): 51-9.
45. Diller KR, Valvano JW, Pearce JA. Bioheat Transfer. In:
Kreith F, editor. CRC Handbook of Thermal Engineering .
Boca Raton: CRC Press; 2000, pp. 114-215.
46. Welch AJ, Polhamus GD. Measurement and Prediction
of Thermal Injury in the Retina of Rhesus Monkey. IEEE
Transactions on Biomedical Engineering . 1984; 31: 633-44.
47. Maitland DJ, Walsh JT, Jr. Quantitative Measurements of
Linear Birefringence During Heating of Native Collagen.
Lasers in Surgery and Medicine . 1997; 20: 310-8.
48. Pearce JA, Thomsen SLMD, Vijverberg H, McMurray
TJ. Kinetics for Birefringence Changes in Thermally
Coagulated Rat Skin Collagen. Society of Photo-Optical
Instrumentation Engineers, Bellingham, WA; 1993, pp.
180-6.
Search WWH ::




Custom Search