Biomedical Engineering Reference
In-Depth Information
hyperthermia using magnetite fine particles. Magnetics,
IEEE Transactions on 34, no. 5: 3745-3754.
Hergt, R., S. Dutz, and M. Röder. 2008. Effects of size distribution
on hysteresis losses of magnetic nanoparticles for hyper-
thermia. Journal of Physics: Condensed Matter 20: 385214.
Hergt, R., R. Hiergeist, I. Hilger, W. A. Kaiser, Y. Lapatnikov, S.
Margel, and U. Richter. 2004. Maghemite nanoparticles with
very high AC-losses for application in RF-magnetic hyper-
thermia. Journal of Magnetism and Magnetic Materials 270,
no. 3: 345-357.
Hergt, R., R. Hiergeist, M. Zeisberger, D. Schüler, U. Heyen, I.
Hilger, and W. A Kaiser. 2005. Magnetic properties of bacte-
rial magnetosomes as potential diagnostic and therapeutic
tools. Journal of Magnetism and Magnetic Materials 293, no.
1: 80-86.
Hergt, R., S. Dutz, and M. Röder. 2008. Effects of size distribution
on hysteresis losses of magnetic nanoparticles for hyper-
thermia. Journal of Physics: Condensed Matter 20, no. 38
(9): 385214.
Hergt, R., R. Hiergeist, M. Zeisberger, D. Schüler, U. Heyen, I.
Hilger, and W. A. Kaiser. 2005. Magnetic properties of bac-
terial magnetosomes as potential diagnostic and therapeutic
tools. Journal of Magnetism and Magnetic Materials 293, no. 1
(May): 80-86.
Hilger, I., K., W. Frühauf, R. Andrä, R. Hiergeist, R. Hergt, and
W. A. Kaiser. 2002. Heating potential of iron oxides for
therapeutic purposes in interventional radiology. Academic
Radiology 9, no. 2: 198-202.
Hilger, I., R. Hiergeist, R. Hergt, K. Winnefeld, H. Schubert, and
W. A Kaiser. 2002. Thermal ablation of tumors using mag-
netic nanoparticles: An in vivo feasibility study. Investigative
Radiology 37, no. 10: 580.
Hoopes, P. J., J. A. Tate, J. A. Ogden, R. R. Strawbridge, S. N.
Fiering, A. A. Petryk, S. M. Cassim et al. 2009. Assessment
of intratumor non-antibody directed iron oxide nanopar-
ticle hyperthermia cancer therapy and antibody directed
IONP uptake in murine and human cells. In Proceedings of
SPIE , 7181:71810P.
Hoopes, P. J., A. A. Petryk, B. Gimi, A. J. Giustini, J. B. Weaver,
J. C. Bischof et al. 2012. In vivo imaging and quantification
of iron oxide nanoparticle uptake and biodistribution. In
Proceedings of SPIE , 8317: 83170R-83170R-9.
Ito, A., K. Tanaka, K. Kondo, M. Shinkai, H. Honda, K. Matsumoto,
T. Saida, and T. Kobayashi. 2003. Tumor regression by com-
bined immunotherapy and hyperthermia using magnetic
nanoparticles in an experimental subcutaneous murine
melanoma. Cancer Science 94, no. 3: 308-313.
Iyer, A. K, G. Khaled, J. Fang, and H. Maeda. 2006. Exploiting
the enhanced permeability and retention effect for tumor
targeting. Drug Discovery Today 11, no. 17: 812-818.
Johannsen, M., U. Gneveckow, K. Taymoorian, C. Hee Cho, B.
Thiesen, R. Scholz, N. Waldöfner, S. A Loening, P. Wust,
and A. Jordan. 2007. Thermal therapy of prostate cancer
using magnetic nanoparticles. Actas Urológicas Espanolas
31: 660-667.
Johannsen, M., U. Gneveckow, K. Taymoorian, B. Thiesen, N.
Waldöfner, R. Scholz, K. Jung, A. Jordan, P. Wust, and S. A.
Loening. 2007. Morbidity and quality of life during ther-
motherapy using magnetic nanoparticles in locally recur-
rent prostate cancer: Results of a prospective phase I trial.
International Journal of Hyperthermia 23, no. 3: 315-323.
Johannsen, M., B. Thiesen, U. Gneveckow, K. Taymoorian, N.
Waldöfner, R. Scholz, S. Deger, K. Jung, S. A Loening, and A.
Jordan. 2006. Thermotherapy using magnetic nanoparticles
combined with external radiation in an orthotopic rat model
of prostate cancer. he Prostate 66, no. 1: 97-104.
Johannsen, M., B. Thiesen, A. Jordan, K. Taymoorian, U. Gneveckow,
N. Waldöfner, R. Scholz et al. 2005. Magnetic fluid hyperther-
mia (MFH) reduces prostate cancer growth in the orthotopic
Dunning R3327 rat model. he Prostate 64, no. 3: 283-292.
Johannsen, M., B. Thiesen, P. Wust, and A. Jordan. 2010. Magnetic
nanoparticle hyperthermia for prostate cancer. International
Journal of Hyperthermia , no. 0: 1-6.
Johannsen, M., U. Gneveckow, B. Thiesen, K. Taymoorian, C. H.
Cho, N. Waldoefner, R. Scholz, A. Jordan, S. Loening, and P.
Wust. 2006. Thermotherapy of prostate cancer using mag-
netic nanoparticles: Feasibility, imaging, and three-dimen-
sional temperature distribution. European Urology 52, no.
6: 1653-1662.
Jones, S. K., B. N. Gray, M. A. Burton, J. P. Codde, and R. Street.
1992. Evaluation of ferromagnetic materials for low-
frequency hysteresis heating of tumours. Physics in Medicine
and Biology 37: 293.
Jordan, A., T. Rheinländer, N. Waldöfner, and R. Scholz. 2003.
Increase of the specific absorption rate (SAR) by magnetic
fractionation of magnetic fluids. Journal of Nanoparticle
Research 5, no. 5: 597-600.
Jordan, A., R. Scholz, K. Maier-Hauff, F. K. H. van Landeghem,
N. Waldoefner, U. Teichgraeber, J. Pinkernelle et al. 2006.
The effect of thermotherapy using magnetic nanoparticles
on rat malignant glioma. Journal of Neuro-Oncology 78, no.
1: 7-14.
Jordan, A., R. Scholz, P. Wust, H. Fähling, J. Krause, W.
Wlodarczyk, B. Sander, T. Vogl, and R. Felix. 1997. Effects
of magnetic fluid hyperthermia (MFH) on C3H mammary
carcinoma in vivo. International Journal of Hyperthermia
13, no. 6: 587-605.
Jordan, A., R. Scholz, P. Wust, H. Schirra, and others. 1999.
Endocytosis of dextran and silan-coated magnetite nanopar-
ticles and the effect of intracellular hyperthermia on human
mammary carcinoma cells in vitro. Journal of Magnetism
and Magnetic Materials 194, no. 1: 185-196.
Jordan, A., P. Wust, H. Fähling, W. John, A. Hinz, and R. Felix.
1993. Inductive heating of ferrimagnetic particles and mag-
netic fluids: Physical evaluation of their potential for hyper-
thermia. International Journal of Hyperthermia 25, no. 7:
499-511.
Jordan, A., P. Wust, R. Scholz, B. Tesche, H. Fähling, T. Mitrovics,
T. Vogl, J. Cervos-Navarro, and R. Felix. 1996. Cellular
uptake of magnetic fluid particles and their effects on human
Search WWH ::




Custom Search