Biomedical Engineering Reference
In-Depth Information
diagnostic capabilities, in addition to improved biodistribution
profiles. Thermally responsive polymers (Zhang, Srivastava, and
Misra 2007) and liposomes (Babincová et al. 2002) combined
with iron oxide nanoparticles have already demonstrated the
great potential for single-platform adjunctive therapies, and it
is likely that the future of cancer medicine will be built on the
promise of such synergistic approaches.
cancer cells without a perceptible temperature rise. ACS
Nano 5, no. 9: 7124-7129.
Cullity, B. D., and C. D. Graham. 2009. Introduction to magnetic
materials . Wiley-IEEE (Hoboken, NJ).
Dennis, C. L, A. J. Jackson, J. A. Borchers, P. J. Hoopes, R. Strawbridge,
A. R. Foreman, J. van Lierop, C. Grüttner, and R. Ivkov.
2009. Nearly complete regression of tumors via collec-
tive behavior of magnetic nanoparticles in hyperthermia.
Nanotechnology 20, no. 39 (9): 395103.
Dudeck, O., K. Bogusiewicz, J. Pinkernelle, G. Gaffke, M. Pech,
G. Wieners, H. Bruhn, A. Jordan, and J. Ricke. 2006. Local
arterial infusion of superparamagnetic iron oxide particles
in hepatocellular carcinoma. Investigative Radiology 41, no.
6: 527-535.
Eastwood, J. D, M. H Lev, T. Azhari, T. Y Lee, D. P Barboriak,
D. M Delong, C. Fitzek et al. 2002. CT Perfusion scanning
with deconvolution analysis: Pilot study in patients with
acute middle cerebral artery stroke. Radiology 222, no. 1: 227.
Etheridge, M. L. and J. C. Bischof. 2012a. Optimizing magnetic
nanoparticle based thermal therapies within the physi-
cal limits of heating. Annals of Biomedical Engineering (In
Press).
Etheridge, M. L., N. Manuchehrabadi, R. Franklin, and J. C.
Bischof. 2012b. Superparamagnetic iron oxide nanopar-
ticle heating: A basic tutorial. In Nanoparticle Heat Transfer
and Fluid Flow, W. J. Minkowycz, E. M. Sparrow, and J. P.
Abraham (eds.), 97-121. CRC Press (New York).
Fallone, B. G., P. R. Moran, and E. B. Podgorsak. 1982. Noninvasive
thermometry with a clinical x-ray CT scanner. Medical
Physics 9: 715.
Foner, S., and H. H Kolm. 2009. Coils for the production of
high-intensity pulsed magnetic fields. Review of Scientific
Instruments 28, no. 10: 799-807.
Freeman, M. L, D. R Spitz, and M. J Meredith. 1990. Does heat
shock enhance oxidative stress? Studies with ferrous and
ferric iron. Radiation Research 124, no. 3: 288-293.
Gilchrist, R. K., R. Medal, W. D. Shorey, R. C. Hanselman, J. C.
Parrott, and C. B. Taylor. 1957a. Selective inductive heating
of lymph nodes. Annals of Surgery 146, no. 4: 596.
Gneveckow, U., A. Jordan, R. Scholz, V. Brüss, N. Waldöfner, J.
Ricke, A. Feussner, B. Hildebrandt, B. Rau, and P. Wust.
2004. Description and characterization of the novel hyper-
thermia- and thermoablation-system MFH300F for clinical
magnetic fluid hyperthermia. Medical Physics 31: 1444.
Gordon, R. T., J. R. Hines, and D. Gordon. 1979. Intracellular
hyperthermia a biophysical approach to cancer treatment
via intracellular temperature and biophysical alterations.
Medical Hypotheses 5, no. 1: 83-102.
Gubin, S. P. 2009. Magnetic nanoparticles . Wiley-VCH
(Weinheim).
Gupta, A. K, and M. Gupta. 2005. Synthesis and surface engineer-
ing of iron oxide nanoparticles for biomedical applications.
Biomaterials 26, no. 18: 3995-4021.
Hergt, R., W. Andra, C. G. d'Ambly, I. Hilger, W. A. Kaiser,
U. Richter, and H. G Schmidt. 2002. Physical limits of
references
Aggarwal, P., J. B Hall, C. B McLeland, M. A Dobrovolskaia, and
S. E McNeil. 2009. Nanoparticle interaction with plasma
proteins as it relates to particle biodistribution, biocom-
patibility and therapeutic efficacy. Advanced Drug Delivery
Reviews 61, no. 6: 428-437.
Amini, A. N, E. S Ebbini, and T. T Georgiou. 2005. Noninvasive
estimation of tissue temperature via high-resolution spec-
tral analysis techniques. Biomedical Engineering, IEEE
Transactions on 52, no. 2: 221-228.
Atkinson, W. J, I. A Brezovich, and D. P Chakraborty. 2007.
Usable frequencies in hyperthermia with thermal seeds.
Biomedical Engineering, IEEE Transactions on , no. 1: 70-75.
Babincová, M., P. Cicmanec, V. Altanerová, C. Altaner, and P.
Babinec. 2002. AC-magnetic field controlled drug release
from magnetoliposomes: Design of a method for site-specific
chemotherapy. Bioelectrochemistry 55, no. 1 (January): 17-19.
Barry, S. E. 2008. Challenges in the development of magnetic par-
ticles for therapeutic applications. International Journal of
Hyperthermia 24, no. 6: 451-466.
Borrelli, N. F., A. A. Luderer, and J. N. Panzarino. 1984. Hysteresis
heating for the treatment of tumours. Physics in Medicine
and Biology 29: 487.
Brezovich, I. A, W. J Atkinson, and M. B Lilly. 1984. Local hyper-
thermia with interstitial techniques. Cancer Research 44, no.
10: 4752s.
Brezovich, I. A. 1988. Low frequency hyperthermia: Capacitive
and ferromagnetic thermoseed methods. Medical Physics
Monograph, Medical Physics , New York.
Byrne, J. D., T. Betancourt, and L. Brannon-Peppas. 2008. Active
targeting schemes for nanoparticle systems in cancer
therapeutics. Advanced Drug Delivery Reviews 60, no. 15
(December 14): 1615-1626.
Chan, D.C.F., D.B. Kirpotina, and P.A. Bunn. 1993. Synthesis and
evaluation of colloidal magnetic iron oxides for the site-
specific radiofrequency-induced hyperthermia of cancer.
Journal of Magnetism and Magnetic Materials 122, no. 1:
374-378.
Chou, C. K. 1990. Use of heating rate and specific absorption
rate in the hyperthermia clinic. International Journal of
Hyperthermia 6, no. 2: 367-370.
Chou, L. Y. T, K. Ming, and W. C. W Chan. 2010. Strategies for
the intracellular delivery of nanoparticles. Chemical Society
Reviews 40: 233-245.
Creixell, M., A. C. Bohórquez, M. Torres-Lugo, and C. Rinaldi.
2011. EGFR-targeted magnetic nanoparticle heaters kill
Search WWH ::




Custom Search