Biomedical Engineering Reference
In-Depth Information
Numerical simulations of ablation therapy with ultrasound
phased arrays are encountered in several other applications. For
example, a simulation model of a phased array focusing through
the ribs is described in (Aubry et al. 2008), and pressures are also
simulated for a related fixed-phase multiple element ultrasound
applicator in (Civale et al. 2006). These models, when combined
with experimental results, suggest strategies that reduce problems
with phase aberration and bone heating. Another simulation model
illustrates the effect of cavitation on the size of the lesion generated
during HIFU (Chavrier et al. 2000). Other simulations calculate the
temperature distribution from estimated power depositions while
controlling the thermal dose for HIFU (Blankespoor et al. 2009).
C. A. Cain and S.-I. Umemura. Concentric-ring and sector-vortex
phased-array applicators for ultrasound hyperthermia.
IEEE Trans. MTT , MTT-34(5):542-551, 1986.
M. S. Canney, M. R. Bailey, L. A. Crum, V. A. Khokhlova, and
O. A. Sapozhnikov. Acoustic characterization of high
intensity focused ultrasound fields: A combined mea-
surement and modeling approach. J. Acoust. Soc. Am. ,
124(4):2406-2420, 2008.
F. Chavrier, J. Y. Chapelon, A. Gelet, and D. Cathignol. Modeling
of high-intensity focused ultrasound-induced lesions in
the presence of cavitation bubbles. J. Acoust. Soc. Am. ,
108(1):432-440, 2000.
X. Chen, C. J. Diederich, J. H. Wootton, J. Pouliot, and I-C.
Hsu. Optimisation-based thermal treatment planning for
catheter-based ultrasound hyperthermia. Int. J. Hypertherm. ,
26(1):39-55, 2010.
R. Chopra, M. Burtnyk, M. A. Haider, and M. J. Bronskill. Method
for MRI-guided conformal thermal therapy of prostate with
planar transurethral ultrasound heating applicators. Phys.
Med. Biol. , 50(21):4957-4975, 2005.
P. T. Christopher and K. J. Parker. New approaches to the lin-
ear propagation of acoustic fields. J. Acoust. Soc. Am. ,
90(1):507-521, 1991a.
P. T. Christopher and K. J. Parker. New approaches to non-
linear diffractive field propagation. J. Acoust. Soc. Am. ,
90(1):488-499, 1991b.
J. Civale, R. Clarke, I. Rivens, and G. ter Haar. The use of a seg-
mented transducer for rib sparing in HIFU treatments.
Ultrasound Med. Biol. , 32(11):1753-1761, 2006.
G. T. Clement and K. Hynynen. A non-invasive method for focus-
ing ultrasound through the human skull. Phys. Med. Biol. ,
47(8):1219-1236, 2002.
G. T. Clement and K. Hynynen. Forward planar projection
through layered media. IEEE Trans. Ultrason. Ferroelect.
Freq. Contr. , 50(12):1689-1698, 2003.
R. O. Cleveland, M. F. Hamilton, and D. T. Blackstock. Time-
domain modeling of finite-amplitude sound in relaxing flu-
ids. J. Acoust. Soc. Am. , 99(6):3312-3318, 1996.
R. S. C. Cobbold. Foundations of biomedical ultrasound. Oxford
University Press , 2007.
F. P. Curra, P. D. Mourad, V. A. Khokhlova, R. O. Cleveland, and
L. A. Crum. Numerical simulations of heating patterns and
tissue temperature response due to high-intensity focused
ultrasound. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. ,
47(4):1077-1089, 2000.
C. Damianou and K. Hynynen. Focal spacing and near-field heat-
ing during pulsed high-temperature ultrasound therapy.
Ultrasound Med. Biol. , 19(9):777-787, 1993.
D. R. Daum and K. Hynynen. A 256-element ultrasonic phased
array system for the treatment of large volumes of deep
seated tissue. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. ,
46(5):1254-1268, 1999.
P. J. Davis and P. Rabinowitz. Numerical integration , 73-76,
87-90, 139-140, and 369. Academic Press, New York,
1975.
6.4 Summary
Several different numerical models, including the Rayleigh-
Sommerfeld integral and other faster approaches, are described for
linear simulations of therapeutic ultrasound generated by single
element and multiple element applicators. Methods for simulating
nonlinear pressure propagation are summarized, a short survey
of the available software for linear and nonlinear pressure calcula-
tions is provided, and the equations for bioheat transfer modeling
and thermal dose calculations are quickly reviewed. These simu-
lations, when combined with optimization and 3D visualization,
provide the framework for patient treatment planning. Examples
of treatment planning strategies are described for mechanically
scanned ultrasound applicators and ultrasound phased array sys-
tems applied to hyperthermia and ablation therapy.
references
S. I. Aanonsen, T. Barkve, J. Naze Tjotta, and S. Tjotta. Distortion
and harmonic generation in the nearfield of a finite ampli-
tude sound beam. J. Acoust. Soc. Am. , 75(3):749-768, 1984.
M. Abramowitz and I. A. Stegun. Handbook of mathematical func-
tions, with formulas, graphs, and mathematical tables , 887-
889 and 916-919. Dover Publications, Inc., New York, 1972.
J. F. Aubry, M. Pernot, F. Marquet, M. Tanter, and M. Fink.
Transcostal high-intensity-focused ultrasound: Ex vivo
adaptive focusing feasibility study. Phys. Med. Biol. ,
53(11):2937-2951, 2008.
A. Blankespoor, A. Payne, N. Todd, M. Skliar, S. Roell, J. Roland,
D. Parker, and R. Roemer. Model predictive control of
HIFU treatments in 3D for treatment time reduction. AIP
Conference Proceedings , 1113(1):215-219, 2009.
R. N. Bracewell. The Fourier transform and its applications .
McGraw-Hill, New York, 2000.
M. Burtnyk, R. Chopra, and M. J. Bronskill. Quantitative analy-
sis of 3-D conformal MRI-guided transurethral ultrasound
therapy of the prostate: Theoretical simulations. Int. J.
Hypertherm. , 25(2):116-31, 2009.
M. Burtnyk, R. Chopra, and M. Bronskill. Simulation study on the
heating of the surrounding anatomy during transurethral
ultrasound prostate therapy: A 3D theoretical analysis of
patient safety. Med. Phys. , 37(6):2862-75, 2010.
 
Search WWH ::




Custom Search