Biology Reference
In-Depth Information
32. Diamond D, Coyle S, Scarmagnani S, Hayes J. Wireless sensor networks and chemo-/
biosensing. Chemical Reviews 2008; 108 :652-79 .
33. Hassibi A, Navid R, Dutton RW, Lee TH. Comprehensive study of noise processes in
electrode electrolyte interfaces. Journal of Applied Physics 2004; 96 :1074-82 .
34. Hintsche R, Paeschke M, Wollenberger U, Schnakenberg U, Wagner B, Lisec T.
Microelectrode arrays and application to biosensing devices. Biosensors and Bioelectronics
1994; 9 :697-705 .
35. Guo QS, Kong T, Su RG, Zhang Q, Cheng GS. Noise spectroscopy as an equilib-
rium analysis tool for highly sensitive electrical biosensing. Applied Physics Letters
2012; 101 :093704 .
36. Madou MJ, Cubicciotti R. Scaling issues in chemical and biological sensors. Proceedings
of the IEEE 2003; 91 :830-8 .
37. Olthuis W, Streekstra W, Bergveld P. Theoretical and experimental determination of
cell constants of planar-interdigitated electrolyte conductivity sensors. Sensors and Actu-
ators B: Chemical 1995; 24 :252-6 .
38. Landheer D, McKinnon WR, Aers GC, Jiang WH, Deen JJ, Shinwari MW. Calculation
of the response of field-effect transistors to charged biological molecules. IEEE Sensors
Journal 2007; 7 :1233-42 .
39. Anan H, Kamahori M, Ishige Y, Nakazato K. Redox-potential sensor array based on
extended-gate field-effect transistors with ω-ferrocenylalkanethiol modified gold elec-
trodes. Sensors and Actuators: B Chemical 2013, in press .
40. Jia YF, Yin XB, Zhang J, Zhou S, Song M, Xing KL. Graphene oxide modified light
addressable potentiometric sensor and its application for ssDNA monitoring. Analyst
2012:5866-73 .
41. Ahn J-H, Choi S-J, Han J-W, Park TJ, Lee SY, Choi Y-K. Double-gate nanowire field
effect transistor for a biosensor. Nano Letters 2010; 10 :2934-8 .
42. Schaffhauser DF, Patti M, Goda T, Miyahara Y, Forster IC, Dittrich PS. An integrated
field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes
via lateral proton diffusion. PLoS One 2012; 7 :e39238 .
43. Zuliani C, Diamond D. Opportunities and challenges of using ion-selective electrodes
in environmental monitoring and wearable sensors. Electrochimica Acta 2012; 84 :29-34 .
44. Dzyadevych SV, Arkhypova VN, Soldatkin AP, El'skaya AV, Martelet C, Jaffrezic-
Renault N. Amperometric enzyme biosensors: past, present and future. IRBM
2008; 29 :171-80 .
45. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chemical
Society Reviews 2010; 39 :1747-63 .
46. Huang XJ, Aldous L, O'Mahony AM, del Campo FJ, Compton RG. Toward
membrane-free amperometric gas sensors: a microelectrode array approach. Analytical
Chemistry 2010; 82 :5238-45 .
47. Del Campo FJ, Ordeig O, Munoz FJ. Improved free chlorine amperometric sensor
chip for drinking water applications. Analyica Chimica Acta 2005; 554 :98-104 .
48. Lee KH, Ishikawa T, Sasaki S, Arikawa Y, Karube I. Chemical oxygen demand
(COD) sensor using a stopped-flow thin layer electrochemical cell. Electroanalysis
1999; 11 :1172-9 .
49. Fukuda J, Tsujimura S, Kano K. Coulometric bioelectrocatalytic reactions based
on NAD-dependent dehydrogenases in tricarboxylic acid cycle. Electrochimica Acta
2008; 54 :328-33 .
50. Grygolowicz-Pawlak E, Bakker E. Background current elimination in thin layer ion-
selective membrane coulometry. Electrochemistry Commununications 2010; 12 :1195-8 .
51. Carroll S, Marei MM, Roussel TJ, Keynton RS, Baldwin RP. Microfabricated elec-
trochemical sensors for exhaustive coulometry applications. Sensors and Actuators B:
Chemical 2011; 160 :318-26 .
Search WWH ::




Custom Search