Biology Reference
In-Depth Information
52. Cheung K, Gawad S, Renaud P. Impedance spectroscopy flow cytometry: on-chip
label-free cell differentiation. Cytometry A 2005; 65 :124-32 .
53. Sohm LL, Saleh OA, Facer GR, Beavis AJ, Allan RS, Notterman DA. Capacitance
cytometry: measuring biological cells one by one. Proceedings of the National Academy of
Sciences 2000; 97 :10687-90 .
54. Ayliffe HE, Frazier AB, Rabbitt RD. Electric impedance spectroscopy using micro-
channels with integrated metal electrodes. Journal of Microelectromechanical Systems
1999; 8 :50-7 .
55. Thielecke H. Capillary chip based characterization of small tissue samples. Medical
Device Technology 2003; 14 :18-20 .
56. Wegener J, Keese CR, Giaver I. Electric cell-substrate impedance sensing (ECIS) as
noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Experi-
mental Cell Research 2000; 259 :158-66 .
57. Ehret R, Baumann W, Brischwein M, Schwinde A, Wolf B. Online control of cellu-
lar adhesion with impedance measurements using interdigitated electrode structures.
Medical and Biological Engineering and Computing 1998; 36 :365-70 .
58. Arndt S, Seebach J, Psathaki K, Galla HJ, Wegener J. Bioelectrical impedance assay
to monitor changes in cell shape apoptosis. Biosensors and Bioelectronics 2004; 19 :
583-94 .
59. Liu Q, Jinjiang Y, Lidan X, Johnny COT, Yu Z , Ping W, et al. Impedance studies of
bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays. Biosensors
and Bioelectronics 2009; 24 :1305-10 .
60. Ceriotti L, Kob A, Drechsler S, Ponti J, Thedinga E, Colpo P, et al. Online monitor-
ing of BALB/3T3 metabolism and adhesion with multiparametric chip-based system.
Analytical Biochemistry 2007; 371 :92-104 .
61. Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K. Dielectro-
phoretic platforms for bio-microfluidic systems. Biosensors and Bioelectronics 2011; 26 :
1800-14 .
62. Valley JK, Neale S, Hsu H-Y, Ohta AT, Jamshidi A, Wu M C. Parallel single-cell
light-induced electroporation and dielectrophoretic manipulation. Lab on a Chip
2009; 9 :1714-20 .
63. Lapizco-Encinas BH, Davalos RV, Simmons BA, Cummings EB, Fintschenko Y. An
insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water.
Journal of Microbiological Methods 2005; 62 :317-26 .
64. Goater AD, Burt JPH, Pethig R. A combined travelling wave dielectrophoresis and
electrorotation device: applied to the concentration and viability determination of
Cryptosporidium . Journal of Applied Physics D: Applied Physics 1997; 30 :L65-9 .
65. Li H, Bashir R. Dielectrophoretic separation and manipulation of live and heat-treated
cells of Listeria on microfabricated devices with interdigitated electrodes. Sensors and
Actuators B: Chemical 2002; 86 :215-21 .
66. Morgan H, Green NG. Dielectrophoretic manipulation of rod-shaped viral particles.
Electrostatics 1997; 42 :279-93 .
67. Sung KE, Burns MA. Optimization of DNA stretching in microfabricated devices.
Analytical Chemistry 2006; 78 :2939-47 .
68. Clarke RW, White SS, Zhou D-J, Ying L-M, Klenerman D. Trapping of proteins under
physiological conditions in a nanopipette. Angewandte Chemie 2005; 117 :3813-6 .
69. Trilling AK, Beekwilder J, Zuilhof H. Antibody orientation on biosensor surfaces: a
minireview. Analyst 2013:1619-27 .
70. Lu L, Chee G, Yamada K, Jun S. Electrochemical impedance spectroscopic technique
with a functionalized microwire sensor for rapid detection of foodborne pathogens.
Biosensors and Bioelectronics 2013:492-5 .
Search WWH ::




Custom Search