Biomedical Engineering Reference
In-Depth Information
with antimicrobial properties, Langmuir 21 (2005),
11915-11921.
[52] K. Liu and L. Jiang, Bio-inspired design of multiscale
structures for function integration, Nano Today 6 (2)
(April 2011), 155-175.
[53] S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia, Freezing
as a path to build complex composites, Science 311
(2006), 515-518.
[54] E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P.
Tomsia, and R.O. Ritchie, Tough, bio-inspired hybrid
materials, Science 322 (2008), 1516-1520.
[55] D. Hull and T. Clyne, An introduction to composite materi-
als , Cambridge University Press, Cambridge, UK (1996).
[56] R.K. Iler, Multilayers of colloidal particles, J Colloid
Interf Sci 21 (1966), 569-594.
[57] O. Mermut, J. Lefebvre, D.G. Gray, and C.J. Barrett,
Structural and mechanical properties of polyelectrolyte
multilayer films studied by AFM, Macromolecules 36
(2003), 8819-8824.
[58] C.A. Wang, B. Long, W. Lin, Y. Huang, and J. Sun,
Poly(amic acid)-clay nacrelike composites prepared
by electrophoretic deposition, J Mater Res 23 (2008),
1706-1712.
[59] Z. Tang, N.A. Kotov, S. Magonov, and B. Ozturk, Nano-
structured artificial nacre, Nat Mater 2 (2003), 413-418.
[60] P. Podsiadlo, M. Qin, M. Cuddihy, J. Zhu, K. Critchley,
E. Kheng, A.K. Kaushik, Y. Qi, H.S. Kim, S.T. Noh, E.M.
Arruda, A.M. Waas, and N.A. Kotov, Highly ductile
multilayered films by layer-by-layer assembly of oppo-
sitely charged polyurethanes for biomedical applica-
tions, Langmuir 25 (2009), 14093-14099.
[61] P. Lavalle, J.C. Voegel, D. Vautier, B. Senger, P. Schaaf,
and V. Ball, Dynamic aspects of films prepared by a
sequential deposition of species: perspectives for smart
and responsive materials, Adv Mater
[38] W.J. Clegg, K. Kendall, N.M. Alford, T.W. Button, and
J.D. Birchall, A simple way to make tough ceramics,
Nature 347 (1990), 455-457.
[39] G. Mayer, New classes of tough composite materials:
Lessons from natural rigid biological systems, Mat Sci
Eng C 26 (2006), 1261-1268.
[40] H.D. Espinosa, J.E. Rim, F. Barthelat, and M.J. Buehler,
Merger of structure and material in nacre and bone:
Perspectives on de novo biomimetic materials, Prog
Mater Sci 54 (2009), 1059-1100.
[41] F. Barthelat, Nacre from mollusk shells: a model for
high-performance structural materials, Bioinsp Biomim
5 (2010).
[42] F. Barthelat and D. Zhu, A novel biomimetic material
duplicating the structure and mechanics of natural
nacre, J Mater Res 26 (2011), 1203-1215.
[43] N.M. Alves, I.B. Leonor, H.S. Azevedo, R.L. Reis, and
J.F. Mano, Designing biomaterials based on biominer-
alization of bone, J Mater Chem 20 (2010), 2911-2921.
[44] Y. Oaki and H. Imai, Hierarchically organized super-
structure emerging from the exquisite association of
inorganic crystals, organic polymers, and dyes: a model
approach towards suprabiomineral materials, Adv
Funct Mater 15 (2005), 1407-1414.
[45] T.E. Schaffer, C. Ionescu-Zanetti, R. Proksch, M. Fritz,
D.A. Walters, N. Almqvist, C.M. Zaremba,
A.M. Belcher, B.L. Smith, G.D. Stucky, D.E. Morse,
and P.K. Hansma, Does abalone nacre form heteroepi-
taxial nucleation or by growth through mineral
bridges? (Vol. 9, p. 1731, 1997), Chem Mater 10 (1998),
946-946.
[46] L.J. Bonderer, A.R. Studart, and L.J. Gauckler, Bio-
inspired design and assembly of platelet reinforced
polymer films, Science 319 (2008), 1069-1073.
[47] T.H. Lin, W.H. Huang, I.K. Jun, and P. Jiang, Bio-
inspired assembly of surface-roughened nanoplatelets,
J Colloid Interf Sci 344 (2010), 272-278.
[48] P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas,
B.S. Shim, J. Xu, H. Nandivada, B.G. Pumplin,
J. Lahann, A. Ramamoorthy, and N.A. Kotov, Ultras-
trong and stiff layered polymer nanocomposites,
Science 318 (2007), 80-83.
[49] A. Walther, I. Bjurhager, J.M. Malho, J. Pere,
J. Ruokolainen, L.A. Berglund, and O. Ikkala, Large-
area, lightweight, and thick biomimetic composites
with superior material properties via fast, economic,
and green pathways, Nano Lett 10 (2010), 2742-2748.
[50] M.E. Launey, E. Munch, D.H. Alsem, E. Saiz, A.P.
Tomsia, and R.O. Ritchie, A novel biomimetic approach
to the design of high-performance ceramic-metal com-
posites, J R Soc Interf 7 (2010), 741-753.
[51] P. Podsiadlo, S. Paternel, J.M. Rouillard, Z. Zhang,
J. Lee, J.W. Lee, E. Gulari, and N.A. Kotov, Layer-by-
layer assembly of nacre-like nanostructured composites
23 (2011),
1191-1221.
[62] A.A. Mamedov, N.A. Kotov, M. Prato, D.M. Guldi, J.P.
Wicksted, and A. Hirsch, Molecular design of strong
single-wall carbon nanotube/polyelectrolyte multi-
layer composites, Nat Mater 1 (2002), 190-194.
[63] P. Podsiadlo, M. Michel, J. Lee, E. Verploegen, N.W.S.
Kam, V. Ball, Y. Qi, A.J. Hart, P.T. Hammond, and N.A.
Kotov, Exponential growth of LBL films with incorpo-
rated inorganic sheets, Nano Lett 8 (2008), 1762-1770.
[64] U. Abraham, An introduction to ultrathin organic films:
from Langmuir-Blodgett to self-assembly , Academic Press,
London, UK (1946).
[65] L.J. Bonderer, A.R. Studart, J. Woltersdorf, E. Pippel,
and L.J. Gauckler, Strong and ductile platelet-rein-
forced polymer films inspired by nature: microstruc-
ture and mechanical properties, J Mater Res 24 (2009),
2741-2754.
[66] J.L. He, J. Wang, W.Z. Li, and H.D. Li, Simulation of
nacre with TiN/Pt multilayers and a study of their
Search WWH ::




Custom Search