Biomedical Engineering Reference
In-Depth Information
[5] M. Miki and Y. Murotsu, The peculiar behavior of the
Poisson's ratio of laminated fibrous composites, JSME
Int J I, Solid Mech Strength Mater 32 (1989), 67-72.
[6] C.T. Herakovich, Composite laminates with negative
through-the-thickness Poisson's ratios, J Compos Mater
18 (1984), 447-455.
[7] R. Lakes, Cellular solid structures with unbounded
thermal expansion, J Mater Sci Lett 15 (1996), 475-477.
[8] A.P. Jackson, J.F.V. Vincent, and R.M. Turner, The
mechanical design of nacre, Proc R Soc Lond B 234
(1988), 415-440.
[9] G. Mayer, Rigid biological systems as models for syn-
thetic composites, Science 310 (2005), 1144-1147.
[10] G.M. Luz and J.F. Mano, Mineralized structures in
nature: examples and inspirations for the design of new
composite materials and biomaterials, Compos Sci
Technol 70 (2010), 1777-1788.
[11] J.W.C. Dunlop and P. Fratzl, Biological composites
(D.R. Clarke, M. Ruhle, and F. Zok, eds.), Annu Rev
Mater Res 40 (2010), 1-24.
[12] P. Fratzl, I. Burgert, and H.S. Gupta, On the role of
interface polymers for the mechanics of natural poly-
meric composites, Phys Chem Chem Phys 6 (2004),
5575-5579.
[13] J.W.C. Dunlop, R. Weinkamer, and P. Fratzl, Artful
interfaces within biological materials, Mater Today 14
(3) (March 2011), 70-78.
[14] F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, and H.D.
Espinosa, On the mechanics of mother-of-pearl: a key
feature in the material hierarchical structure, J Mech
Phys Solids 55 (2007), 306-337.
[15] M.J. Harrington and J.H. Waite, How nature modulates
a fiber's mechanical properties: mechanically distinct
fibers drawn from natural mesogenic block copolymer
variants, Adv Mater 21 (2009), 440-444.
[16] R.O. Ritchie, The conflicts between strength and tough-
ness, Nat Mater 10 (2011), 817-822.
[17] G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H.
Birkedal, L. Pechenik, J.A. Cutroni, G.A.G. Cidade,
G.D. Stucky, D.E. Morse, and P.K. Hansma, Sacrificial
bonds and hidden length dissipate energy as mineral-
ized fibrils separate during bone fracture, Nat Mater 4
(2005), 612-616.
[18] B.L. Smith, T.E. Schäffer, M. Vlani, J.B. Thompson,
N.A. Frederick, J. Klndt, A. Belcher, G.D. Stuckyll,
D.E. Morse, and P.K. Hansma, Molecular mechanistic
origin of the toughness of natural adhesives, fibres and
composites, Nature 399 (1999), 761-763.
[19] S. Mann, Molecular recognition in biomineralization,
Nature 332 (1988), 119-124.
[20] M.J. Buehler, S. Keten, and T. Ackbarow, Theoretical
and computational hierarchical nanomechanics of
protein materials: deformation and fracture, Prog Mater
Sci 53 (2008), 1101-1241.
[21] I.A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L.
Zhou, P. Fenter, P.M. Eisenberger, and S.M. Gruner, Bio-
mimetic pathways for assembling inorganic thin films,
Science 273 (1996), 892-898.
[22] M.A. Meyers, P.Y. Chen, A.Y.M. Lin, and Y. Seki, Bio-
logical materials: structure and mechanical properties,
Prog Mater Sci 53 (2008), 1-206.
[23] X. Guo and H. Gao, Bio-inspired material design and
optimization , Springer-Verlag, Heidelberg, Germany,
New York (2006).
[24] H. Gao, Application of fracture mechanics concepts to
hierarchical biomechanics of bone and bone-like mate-
rials, Int J Fracture 138 (2006), 101-137.
[25] I. Jager and P. Fratzl, Mineralized collagen fibrils: a
mechanical model with a staggered arrangement of
mineral particles, Biophys J 79 (2000), 1737-1746.
[26] H. Gao, B. Ji, I.L. Jäger, E. Arzt, and P. Fratzl, Materials
become insensitive to flaws at nanoscale: lessons from
nature, Proc Natl Acad Sci 100 (2003), 5597.
[27] S. Kotha, Y. Li, and N. Guzelsu, Micromechanical
model of nacre tested in tension, J Mater Sci 36 (2001),
2001-2007.
[28] S.P. Kotha, Y. Li, and N. Guzelsu, Micromechanical
model of nacre tested in tension, J Mater Sci 36 (2001),
2001-2007.
[29] F. Barthelat and R. Rabiei, Toughness amplification in
natural composites, J Mech Phys Solids 59 (2011),
829-840.
[30] S. Bekah, R. Rabiei, and F. Barthelat, Structure, scaling,
and performance of natural micro- and nanocompos-
ites, BioNanoSci 1 (2011), 1-9.
[31] J.C. Weaver, G.W. Milliron, A. Miserez, K. Evans-Lut-
terodt, S. Herrera, I. Gallana, W.J. Mershon, B. Swanson,
P. Zavattieri, and E. DiMasi, The stomatopod dactyl
club: a formidable damage-tolerant biological hammer,
Science 336 (2012), 1275-1280.
[32] K.E. Tanner, Small but extremely tough, Science 336
(2012), 1237-1238.
[33] R. Rabiei, S. Bekah, and F. Barthelat, Failure mode tran-
sition in nacre and bone-like materials, Acta Biomater 6
(2010), 4081-4089.
[34] A. Sellinger, P.M. Weiss, A. Nguyen, Y. Lu, R.A. Assink,
W. Gong, and C.J. Brinker, Continuous self-assembly of
organic-inorganic nanocomposite coatings that mimic
nacre, Nature 394 (1998), 256-260.
[35] J.H.E. Cartwright and A.G. Checa, The dynamics of
nacre self-assembly, J R Soc Interf 4 (2007), 491-504.
[36] J.Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Mechanical
properties and the hierarchical structure of bone, Med
Eng Phys 20 (1998), 92-102.
[37] W. Tesch, N. Eidelman, P. Roschger, F. Goldenberg,
K. Klaushofer, and P. Fratzl, Graded microstructure and
mechanical properties of human crown dentin, Calcified
Tissue Int 69 (2001), 147-157.
Search WWH ::




Custom Search