Biomedical Engineering Reference
In-Depth Information
[19] M. Abeles, Firing rates and well-timed events, Models of
neural networks 2 (E. Domany, K. Schulten, and J.L. van
Hemmen (eds.)), Springer, NY, USA (1994), 121-140
[20] Z.F. Mainen and T.J. Sejnowski, Reliability of spike timing
in neocortical neurons, Science 268 (1995), 1503-1506.
[21] R. Lyon and C. Mead, An analog electronic cochlea,
IEEE Trans Acoust Speech Signal Process 36 (1988),
1119-1134.
[22] H.E. Derksen and A.A. Verveen, Fluctuations of
resting neural membrane potential, Science 151 (1966),
1388-1389.
[23] A. Destexhe, M. Rudolph, and D. Pare, The high-
conductance state of neocortical neurons in vivo, Nat
Rev Neurosci 4 (2003), 739-751.
[24] E.T. Rolls and G. Deco, The noisy brain: Stochastic dyna-
mics as a principle of brain function , Oxford University
Press, Oxford, UK (2010).
[25] A.A. Faisal, Noise in the nervous system, Nat Rev Neu-
rosci 9 (2010), 292-303.
[26] H. Markram and M. Tsodyks, Redistribution of synap-
tic efficacy between neocortical pyramidal neurons,
Nature 382 (1996), 807-810.
[27] J.A. White, J.T. Rubinstein, and A.R. Kay, Channel noise
in neurons, Trends Neurosci 23 (2000), 131-137.
[28] W. Gerstner, Population dynamics of spiking neurons:
fast transients, asynchronous states, and locking, Neural
Comput 12 (1999), 43-89.
[29] L. Gammaitoni, P. Hnggi, P. Jung, and F. Marchesoni,
Stochastic resonance, Rev Mod Phys
[32] O. Rosso and C. Masoller, Detecting and quantifying sto-
chastic and coherence resonances via information-theory
complexity measurements, Phys Rev E 79 (2009), 040106.
[33] J.E. Levin and J.P. Miller, Broadband neural encoding
in the cricket cereal sensory system enhanced by sto-
chastic resonance, Nature 380 (1996), 165-168.
[34] M.J. Chacron, B. Lindner, L. Maler, A. Longtin, and
J. Bastian, Experimental and theoretical demonstration
of noise shaping by interspike interval correlations,
Proc SPIE 5841 (2005), 150-163.
[35] C.C. Bell, V.Z. Han, Y. Sugawara, and K. Grant, Synap-
tic plasticity in a cerebellum-like structure depends on
temporal order, Nature 387 (1997), 278-281.
[36] R.N. Miles and R.R. Hoy, The development of a bio-
medically inspired directional microphone for hearing
aids, Audiol Neurol 11 (2006), 86-94.
[37] M.N. Do, Toward sound-based synthesis: the far-field
case, Signal Process 2 (2004), 601-604.
[38] M. Stanacevic and G. Cauwenberghs, Micropower gra-
dient flow acoustic localizer, IEEE Trans Circuit Sys 152
(2005), 2148-2157.
[39] A. Gore, A. Fazel, and S. Chakrabartty, Far-field
acoustic source localization and bearing estimation
using learners, IEEE Trans Circuit Sys I (2010),
783-792.
[40] A. Gore and S. Chakrabartty, Large margin multi-channel
analog-to-digital conversion with applications to neural
prosthesis, Proceedings of the advances in neural information
processing system ( NIPS 2006 ), Vancouver, British Columbia,
Canada (2006), 497-504.
[41] V.V. Vapnik, The nature of statistical learning theory ,
Springer-Verlag, Heidelberg, Germany (1995).
[42] F. Girosi, M. Jones, and T. Poggio, Regularization
theory and neural networks architectures, Neural
Comput 7 (1996), 219-269.
[43] S. Boyd and L. Vandenberghe, Convex optimization ,
Cambridge University Press, Cambridge, UK (2004).
70 (1998),
223-287.
[30] D.J. Mar, C.C. Chow, W. Gerstner, R.W. Adams, and J.J.
Collins, Noise shaping in populations of coupled model
neurons, Proc Natl Acad Sci 96 (1999), 10450-10455.
[31] A. Longtin, F. Moss, and K. Bulsara, Time-interval
sequences in bistable systems and the noise-induced
transmission of information by sensory neurons, Phys
Rev Lett 67 (1991), 656-659.
Search WWH ::




Custom Search