Biomedical Engineering Reference
In-Depth Information
biomimetic microstructures and interfaces for high-
performance optics, Proc SPIE 7057 (2008), 705705.
[80] Y. Ding, S. Xu, Y. Zhang, A.C. Wang, M.H. Wang, Y. Xiu,
C.P. Wong, and Z.L. Wang, Modifying the anti-wetting
property of butterfly wings and water-strider legs by
atomic layer deposition coating: Surface materials
versus geometry, Nanotechnology 19 (2008), 355708.
[81] A.B.D. Cassie and S. Baxter, Wettability of porous sur-
faces, Trans Faraday Soc 40 (1944), 546-551.
[82] R.N. Wenzel, Resistance of solid surfaces to wetting by
water, Ind Eng Chem 28 (1936), 988-994.
[83] D. Quere, Non-sticking drops, Rep Prog Phys 68 (2005),
2495-2532.
[84] D.S. Finch, T. Oreskovic, K. Ramadurai, C.F. Herrmann,
S.M. George, and R.L. Mahajan, Biocompatibility of
atomic layer-deposited alumina thin films, J Biomed
Mater Res A 87A (2008), 100-106.
[85] M. Putkonen, T. Sajavaara, P. Rahkila, L. Xu, S. Cheng,
L. Niinistö, and H.J. Whitlow, Atomic layer deposition
and characterization of biocompatible hydroxyapatite
thin films, Thin Solid Films 517 (2009), 5819-5824.
[86] R.J. Narayan, N.A. Monteiro-Riviere, R.L. Brigmon,
M.J. Pellin, and J.W. Elam, Atomic layer deposition of
TiO 2 thin films on nanoporous alumina templates:
medical applications, JOM 61 (2009), 12-16.
[87] R.J. Narayan, S.P. Adiga, M.J. Pellin, L.A. Curtiss, S.
Stafslien, B. Chisholm, N.A. Monteiro-Riviere, R.L.
Brigmon, and J.W. Elam, Atomic layer deposition of
nanoporous biomaterials, Mater Today 13 (3) (March
2010), 60-64.
[88] R.J. Narayan, S.P. Adiga, M.J. Pellin, L.A. Curtiss, A.J.
Hryn, S. Stafslien, B. Chisholm, C.-C. Shih, C.-M. Shih,
S.-J. Lin, Y.-Y. Su, C. Jin, J. Zhang, N.A. Monteiro-
Riviere, and J.W. Elam, Atomic layer deposition-based
functionalization of materials for medical and environ-
mental health applications, Phil Trans R Soc Lond A 368
(2010), 2033-2064.
[89] G.K. Hyde, S.D. McCullen, S. Jeon, S.M. Stewart, H. Jeon,
E.G. Loboa, and G.N. Parsons, Atomic layer deposition
and biocompatibility of titanium nitride nano-coatings on
cellulose fiber substrates, Biomed Mater 4 (2009), 025001.
[90] Y. Zhao, M. Wei, Z.L. Wang, and X. Duan, Biotemplated
hierarchical nanostructure of layered double hydrox-
ides with improved photocatalysis performance, ACS
Nano 3 (2009), 4009-4016.
[91] H.J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D.
Hesse, M. Zacharias, and U. Gösele, Monocrystalline
spinel nanotube fabrication based on the Kirkendall
effect, Nat Mater 5 (2006), 627-631.
[92] J.S. King, A. Wittstock, J. Biener, S.O. Kucheyev, Y.M.
Wang, T.F. Baumann, S.K. Gin, A.V. Hamza, M.
Bauemer, and S.F. Bent, Ultralow loading Pt nanocata-
lysts prepared by atomic layer deposition on carbon
aerogels, Nano Lett 8 (2008), 2405-2409.
[93] S.T. Christensen, J.W. Elam, F.A. Rabuffetti, Q. Ma, S.J.
Weigand, B. Lee, S. Seifert, P.C. Stair, K.R. Poeppelmeier,
M.C. Hersam, and M.J. Bedzyk, Controlled growth of
platinum nanoparticles on strontium titanate nanocubes
by atomic layer deposition, Small 5 (2009), 750-757.
[94] H. Feng, J.W. Elam, J.A. Libera, W. Setthapun, and P.C.
Stair, Palladium catalysts synthesized by atomic layer
deposition for methanol decomposition, Chem Mater
22 (2010), 3133-3142.
[95] S.T. Christensen, H. Feng, J.L. Libera, N. Guo, J.T.
Miller, P.C. Stair, and J.W. Elam, Supported RuPt
bimetallic nanoparticle catalysts prepared by atomic
layer deposition, Nano Lett 10 (2010), 3047-3051.
[96] S. Ikeda, S. Ishino, T. Harada, N. Okamoto, T. Sakata,
H. Mori, S. Kuwabata, T. Torimoto, and M. Mat-
sumura, Ligand-free platinum nanoparticles encapsu-
lated in a hollow porous carbon shell as a highly active
heterogeneous hydrogenation catalyst, Angew Chem
Int Ed 45 (2006), 7063-7066.
[97] M. Moreno-Manas and R. Pleixats, Formation of car-
bon-carbon bonds under catalysis by transition-metal
nanoparticles, Acc Chem Res 36 (2003), 638-643.
[98] X.N. Hu, J.B. Liu, S. Hou, T. Wen, W.Q. Liu, K. Zhang,
W.W. He, Y.L. Ji, H.X. Ren, Q. Wang, and X.C. Wu,
Research progress of nanoparticles as enzyme mimet-
ics, Sci China 54 (2011), 1749-1756.
[99] L. Zhang, L. Laug, W. Muenchgesang, E. Pippel, M.
Brandsch, and M. Knez, Reducing stress on cells with
apoferritin-encapsulated
platinum
nanoparticles,
Nano Lett 10 (2010), 219-223.
[100] L. Zhang, W. Fisher, E. Pippel, G. Hause, M. Brandsch,
and M. Knez, Receptor-mediated cellular uptake of
nanoparticles: a switchable delivery system, Small 7
(2011), 1538-1541.
[101] W.W. He, X.C. Wu, and J.B. Liu, Design of AgM bime-
tallic alloy nanostructures (M = Au, Pd, Pt) with
tunable morphology and peroxidase-like activity,
Chem Mater 22 (2010), 2988-2994.
[102] A. Asati, S. Santra, and C. Kaittanis, Oxidase-like
activity of polymer-coated cerium oxide nanoparti-
cles, Angew Chem Int Ed 48 (2009), 2308-2312.
[103] L. Gao, J. Zhuang, and L. Nie, Intrinsic peroxidase-
like activity of ferromagnetic nanoparticles, Nat Nano-
technol 2 (2007), 577-583.
[104] J. Paivasaari, M. Putkonen, and L. Niinisto, Cerium
dioxide buffer layers at low temperature by atomic
layer deposition, J Mater Chem 12 (2002), 1828-1832.
[105] J. Bachmann, J. Jing, M. Knez, S. Barth, H. Shen, S.
Mathur, U. Gösele, and K. Nielsch, Ordered iron oxide
nanotube arrays of controlled geometry and tunable
magnetism by atomic layer deposition, J Am Chem Soc
129 (2007), 9554-9555.
[106] X. Jiang, T.M. Gür, F.B. Prinz, and S.F. Bent, Atomic
layer deposition (ALD) co-deposited PtRu binary and
Search WWH ::




Custom Search