Biomedical Engineering Reference
In-Depth Information
bly of S-layer proteins and area-selective atomic layer
deposition, J Am Chem Soc 130 (2008), 16908-16913.
[53] H. Kim, E. Pippel, U. Gösele, and M. Knez, Titania
nanostructures fabricated by atomic layer deposition
using spherical protein cages, Langmuir 25 (2009),
13284-13289.
[54] M.J. Beijerinck, Ueber ein contagium vivum fuidum als
Ursache der Fleckenkrankheit der Tabaksblätter, Verh
Kon Akad Wetesch 65 (1898), 3-21.
[55] G.A. Kausche and H. Ruska, The visualisation of
adsorption of metal colloids on protein bodies: the reac-
tion between colloidal gold—tobacco mosaic virus,
Kolloid Z 89 (1939), 21-26.
[56] W. Shenton, T. Douglas, M. Young, G. Stubbs, and S.
Mann, Inorganic-organic nanotube composites from
template mineralization of tobacco mosaic virus, Adv
Mater 11 (1999), 253-256.
[57] C.E. Fowler, W. Shenton, G. Stubbs, and S. Mann,
Tobacco mosaic virus liquid crystals as templates for
the interior design of silica mesophases and nanoparti-
cles, Adv Mater 13 (2001), 1266-1269.
[58] E. Dujardin, C. Peet, G. Stubbs, J.N. Culver, and S.
Mann, Organization of metallic nanoparticles using
tobacco mosaic virus templates, Nano Lett 3 (2003),
413-417.
[59] M. Knez, M. Sumser, A.M. Bittner, C. Wege, H. Jeske,
S. Kooi, M. Burghard, and K. Kern, Electrochemical
modification of individual nano-objects, J Electroanal
Chem 522 (2002), 70-74.
[60] M. Knez, A.M. Bittner, F. Boes, C. Wege, H. Jeske, E.
Maiss, and K. Kern, Biotemplate synthesis of 3-nm
nickel and cobalt nanowires, Nano Lett 3 (2003),
1079-1082.
[61] M. Knez, M. Sumser, A.M. Bittner, C. Wege, H. Jeske,
T.P. Martin, and K. Kern, Spatially selective nucleation
of metal clusters on the tobacco mosaic virus, Adv Funct
Mater 14 (2004), 116-124.
[62] S. Balci, A.M. Bittner, K. Hahn, C. Scheu, M. Knez, A.
Kadri, C. Wege, H. Jeske, and K. Kern, Copper nanow-
ires within the central channel of tobacco mosaic virus
particles, Electrochim Acta 51 (2006), 6251-6257.
[63] K. Gerasopoulos, M. McCarthy, E. Royston, J.N. Culver,
and R. Ghodssi, Nanostructured nickel electrodes
using the Tobacco mosaic virus for microbattery appli-
cations, J Micromech Microeng 18 (2008), 104003.
[64] E. Royston, A. Ghosh, P. Kofinas, M.T. Harris, and J.N.
Culver, Self-assembly of virus-structured high surface
area nanomaterials and their application as battery
electrodes, Langmuir 24 (2008), 906-912.
[65] R.J. Tseng, C.L. Tsai, L.P. Ma, and J.Y. Ouyang, Digital
memory device based on tobacco mosaic virus conjugated
with nanoparticles, Nat Nanotechnol 1 (2006), 72-77.
[66] M. Knez, M.P. Sumser, A.M. Bittner, C. Wege, H. Jeske,
D.M.P. Hoffmann, K. Kuhnke, and K. Kern, Binding the
tobacco mosaic virus to inorganic surfaces, Langmuir 20
(2004), 441-447.
[67] S. Balci, D.M. Leinberger, M. Knez, A.M. Bittner, F.
Boes, A. Kadri, C. Wege, H. Jeske, and K. Kern, Printing
and aligning mesoscale patterns of tobacco mosaic
virus on surfaces, Adv Mater 20 (2008), 2195-2200.
[68] K. Gerasopoulos, M. McCarthy, P. Banerjee, X. Fan, J.N.
Culver, and R. Ghodssi, Biofabrication methods for the
patterned assembly and synthesis of viral nano
templates, Nanotechnology 21 (2010), 055304.
[69] F. Mumm, M. Kemell, M. Leskelä, and P. Sikorski, A
bio-originated porous template for the fabrication of
very long, inorganic nanotubes and nanowires, Bioinsp
Biomim 5 (2010), 026005.
[70] N. Kröger and N. Poulsen, Diatoms—from cell wall
biogenesis to nanotechnology, Annu Rev Genetics 42
(2008), 83-107.
[71] D. Losic, G. Triani, P.J. Evans, A. Atanacio, J.G. Mitchell,
and N.H. Voelcker, Controlled pore structure modifica-
tion of diatoms by atomic layer deposition, J Mater
Chem 16 (2006), 4029-4034.
[72] G.L. Rorrer, C. Jeffryes, C.-H. Chang, D.-H. Lee, T.
Gutu, J. Jiao, and R. Solanki, Biological fabrication of
nanostructured silicon-germanium photonic crystals
possessing unique photoluminescent and electrolumi-
nescent properties, Proc SPIE 6645 (2007), 66450A.
[73] S.-M. Lee, J. Üpping, A. Bielawny, and M. Knez, The
structure based color of natural petals discriminated by
polymer replication, ACS Appl Mater Interf 3 (2011),
30-34.
[74] J. Huang, X. Wang, and Z.L. Wang, Controlled replica-
tion of butterfly wings for achieving tunable photonic
properties, Nano Lett 6 (2006), 2325-2331.
[75] D.P. Gaillot, O. Deparis, V. Welch, B.K. Wagner, J.P.
Vigneron, and C.J. Summers, Composite organic-inor-
ganic butterfly scales: production of photonic struc-
tures with atomic layer deposition, Phys Rev E 78
(2008), 031922.
[76] F. Liu, Y.P. Liu, L. Huang, X.H. Hu, B.Q. Dong, W.Z.
Shi, Y.Q. Xie, and X.A. Ye, Replication of homologous
optical and hydrophobic features by templating wings
of butterflies Morpho menelaus , Opt Commun 284 (2011),
2376-2381.
[77] X. Tang, L.A. Francis, P. Simonis, M. Haslinger, R.
Delamare, O. Deschaume, D. Flandre, P. Defrance, A.M.
Jonas, J.P. Vigneron, and J.P. Raskin, Room temperature
atomic layer deposition of Al 2 O 3 and replication of but-
terfly wings for photovoltaic application, J Vac Sci
Technol A 30 (2012), 01A146.
[78] J. Huang, X. Wang, and Z.L. Wang, Bio-inspired fabri-
cation of anti-reflection nanostructures by replicating
fly eyes, Nanotechnology 19 (2008), 025602.
[79] R. Brunner, A. Deparnay, M. Helgert, M. Burkhardt, T.
Lohmuller, and J.P. Spatz, Product piracy from nature:
Search WWH ::




Custom Search