Biomedical Engineering Reference
In-Depth Information
[61] M. Ibn-Elhaj and M. Schadt, Optical polymer thin
films with isotropic and anisotropic nano-corrugated
surface topologies, Nature 410 (2001), 796-799.
[62] S.H. Baek, S.B. Kim, J.K. Shin, and J.H. Kim, Prepara-
tion of hybrid silicon wire and planar solar cells
having ZnO antireflection coating by all-solution pro-
cesses, Sol Energy Mater Sol Cells 96 (2012), 251-256.
[63] J.Y. Chen, W.L. Chang, C.K. Huang, and K.W. Sun,
Biomimetic nanostructured antireflection coating and
its application on crystalline silicon solar cells, Opt
Express 19 (2011), 14411-14419.
[64] N. Kadakia, S. Naczas, H. Bakhru, and M.B. Huang,
Fabrication of surface textures by ion implantation for
antireflection of silicon crystals, Appl Phys Lett 97
(2010)
[65] J.W. Leem, Y.M. Song, and J.S. Yu, Broadband wide-
angle antireflection enhancement in AZO/Si shell/
core subwavelength grating structures with hydro-
phobic surface for Si-based solar cells, Opt Express 19
(2011), A1155-A1164.
[66] Y.S. Lin, W.C. Hsu, K.C. Huang, and J.A. Yeh, Wafer-
level fabrication and optical characterization of
nanoscale patterned sapphire substrates, Appl Surf Sci
258 (2011), 2-6.
[67] Y. Liu and M.H. Hong, Ultralow broadband optical
reflection of silicon nanostructured surfaces coupled with
antireflection coating, J Mater Sci 47 (2012), 1594-1597.
[68] Y. Liu, S.H. Sun, J. Xu, L. Zhao, H.C. Sun, J. Li,
W.W. Mu, L. Xu, and K.J. Chen, Broadband antireflec-
tion and absorption enhancement by forming nano-
patterned Si structures for solar cells, Opt Express 19
(2011), A1051-A1056.
[69] J.N. Munday and H.A. Atwater, Large integrated
absorption enhancement in plasmonic solar cells by
combining metallic gratings and antireflection coat-
ings, Nano Lett 11 (2011), 2195-2201.
[70] E. Osorio, R. Urteaga, L.N. Acquaroli, G. García-
Salgado, H. Juaréz, and R.R. Koropecki, Optimization
of porous silicon multilayer as antireflection coatings
for solar cells, Sol Energy Mater Sol Cells 95 (2011),
3069-3073.
[71] H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and
W.J. Padilla, Broadband optical antireflection enhance-
ment by integrating antireflective nanoislands with
silicon nanoconical-frustum arrays, Adv Mater 23
(2011), 5796.
[72] J.H. Selj, T.T. Mongstad, R. Sondena, and E.S. Marstein,
Reduction of optical losses in colored solar cells with
multilayer antireflection coatings, Sol Energy Mater Sol
Cells 95 (2011), 2576-2582.
[73] N. Yamada, T. Ijiro, E. Okamoto, K. Hayashi, and
H. Masuda, Characterization of antireflection moth-
eye film on crystalline silicon photovoltaic module,
Opt Express 19 (2011), A118-A125.
[74] T.C. Yang, T.Y. Huang, H.C. Lee, T.J. Lin, and T.J. Yen,
Applying silicon nanoholes with excellent antireflec-
tion for enhancing photovoltaic performance, J Electro-
chem Soc 159 (2012), B104-B108.
[75] B.J. Bae, S.H. Hong, E.J. Hong, H. Lee, and G.Y. Jung,
Fabrication of moth-eye structure on glass by ultravio-
let imprinting process with polymer template, Jpn J
Appl Phys 48 (2009), 010207.
[76] S.H. Hong, B.J. Bae, K.S. Han, E.J. Hong, H. Lee, and
K.W. Choi, Imprinted moth-eye antireflection patterns
on glass substrate, Electron Mater Lett 5 (2009), 39-42.
[77] H.S. Jang, J.H. Kim, K.S. Kim, G.Y. Jung, J.J. Lee, and
G.H. Kim, Improvement of transmittance by fabricat-
ing broadband subwavelength anti-reflection struc-
tures for polycarbonate, J Nanosci Nanotechnol 11
(2011), 291-295.
[78] I. Saarikoski, M. Suvanto, and T.A. Pakkanen, Modifi-
cation of polycarbonate surface properties by nano-,
micro-, and hierarchical micro-nanostructuring, Appl
Surf Sci 255 (2009), 9000-9005.
[79] H.-Y. Tsai and C.-J. Ting, Optical characteristics of
moth-eye structures on poly(methyl methacrylate)
and polycarbonate sheets fabricated by thermal nano-
imprinting processes, Jpn J Appl Phys 48 (2009),
06FH19.
[80] N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov,
H. Yoshimura, and K. Nagayama, 2-Dimensional crys-
tallization, Nature 361 (1993), 26.
[81] P. Jiang, J.F. Bertone, K.S. Hwang, and V.L. Colvin,
Single-crystal colloidal multilayers of controlled thick-
ness, Chem Mater 11 (1999), 2132-2140.
[82] Y.A. Vlasov, X.Z. Bo, J.C. Sturm, and D.J. Norris, On-
chip natural assembly of silicon photonic bandgap
crystals, Nature 414 (2001), 289-293.
[83] S. Wong, V. Kitaev, and G.A. Ozin, Colloidal crystal
films: advances in universality and perfection, J Am
Chem Soc 125 (2003), 15589-15598.
[84] A.A. Mamedov, A. Belov, M. Giersig, N.N. Mamedova,
and N.A. Kotov, Nanorainbows: graded semiconduc-
tor films from quantum dots, J Am Chem Soc 123 (2001),
7738-7739.
[85] S. Srivastava and N.A. Kotov, Composite layer-by-
layer (LBL) assembly with inorganic nanoparticles
and nanowires, Acc Chem Res 41 (2008), 1831-1841.
[86] Y. Lin, H. Skaff, T. Emrick, A.D. Dinsmore, and
T.P. Russell, Nanoparticle assembly and transport at
liquid-liquid interfaces, Science 299 (2003), 226-229.
[87] A.G. Dong, J. Chen, P.M. Vora, J.M. Kikkawa, and
C.B. Murray, Binary nanocrystal superlattice mem-
branes self-assembled at the liquid-air interface,
Nature 466 (2010), 474-477.
[88] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate,
S. John, S.W. Leonard, C. Lopez, F. Meseguer,
H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, and
Search WWH ::




Custom Search