Biomedical Engineering Reference
In-Depth Information
X.L. Du, Nanostructure formation and passivation of
large-area black silicon for solar cell applications,
Small 8 (2012), 1392-1397.
[32] C.M. Kennemore III and U.J. Gibson, Ion beam pro-
cessing for coating MgF 2 onto ambient temperature
substrates, Appl Opt 23 (1984), 3608-3611.
[33] U. Schulz, Review of modern techniques to generate
antireflective properties on thermoplastic polymers,
Appl Opt 45 (2006), 1608-1618.
[34] J.Y. Kim, Y.K. Han, E.R. Kim, and K.S. Suh, Two-layer
hybrid anti-reflection film prepared on the plastic sub-
strates, Curr Appl Phys 2 (2002), 123-127.
[35] H. Kondo, L. Sungkil, and H. Hanaoka, Durable anti-
smudge materials for display terminals, Tribol Lubr
Technol 65 (2009), 54-61.
[36] B.T. Liu, W.D. Yeh, and W.H. Wang, Preparation of low
refractive index fluorinated materials for antireflection
coatings, J Appl Polym Sci 118 (2010), 1615-1619.
[37] H. Mori, C. Sada, T. Konno, and K. Yonetake, Synthesis
and characterization of low-refractive-index fluori-
nated silsesquioxane-based hybrids, Polymer 52 (2011),
5452-5463.
[38] M.S. Park, Y. Lee, and J.K. Kim, One-step preparation
of antireflection film by spin-coating of polymer/
solvent/nonsolvent ternary system, Chem Mater 17
(2005), 3944-3950.
[39] P.W. de Oliveira, C. Becker-Willinger, and M.H. Jilavi,
Sol-gel derived nanocomposites for optical applica-
tions, Adv Eng Mater 12 (2010), 349-361.
[40] J. Pilipavicius, I. Kazadojev, A. Beganskiene,
A. Melninkaitis, V. Sirutkaitis, and A. Kareiva, Hydro-
phobic antireflective silica coatings via sol-gel
process, Mater Sci 14 (2008), 283-287.
[41] R. Prado, G. Beobide, A. Marcaide, J. Goikoetxea, and
A. Aranzabe, Development of multifunctional sol-gel
coatings: anti-reflection coatings with enhanced self-
cleaning capacity, Sol Energy Mater Sol Cells 94 (2010),
1081-1088.
[42] K. Tadanaga, N. Yamaguchi, Y. Uraoka, A. Matsuda,
T. Minami, and M. Tatsumisago, Anti-reflective prop-
erties of nano-structured alumina thin films on
poly(methyl methacrylate) substrates by the sol-gel
process with hot water treatment, Thin Solid Films 516
(2008), 4526-4529.
[43] K.-S. Han, H. Lee, D. Kim, and H. Lee, Fabrication of
anti-reflection structure on protective layer of solar
cells by hot-embossing method, Sol Energy Mater Sol
Cells 93 (2009), 1214-1224.
[44] S. Chattopadhyay, Y.F. Huang, Y.J. Jen, A. Ganguly,
K.H. Chen, and L.C. Chen, Anti-reflecting and pho-
tonic nanostructures, Mater Sci Eng R 69 (2010), 1-35.
[45] P.B. Clapham and M.C. Hutley, Reduction of lens
reflection by moth eye principle, Nature 244 (1973),
281-282.
[46] D.G. Stavenga, S. Foletti, G. Palasantzas, and
K. Arikawa, Light on the moth-eye corneal nipple
array of butterflies, Proc R Soc Lond B 273 (2006),
661-667.
[47] S.A. Boden and D.M. Bagnall, Tunable reflection
minima of nanostructured antireflective surfaces, Appl
Phys Lett 93 (2008), 133108.
[48] R. Dewan, S. Fischer, V.B. Meyer-Rochow,
Y. Ozdemir, S. Hamraz, and D. Knipp, Studying
nanostructured nipple arrays of moth eye facets
helps to design better thin film solar cells, Bioinsp
Biomim 7 (2012), 016003.
[49] C. Heine and R.H. Morf, Submicrometer gratings for
solar-energy applications, Appl Opt
34 (1995),
2476-2482.
[50] Y. Kanamori, E. Roy, and Y. Chen, Antireflection sub-
wavelength gratings fabricated by spin-coating repli-
cation, Microelectron Eng 78-79 (2005), 287-293.
[51] Z.N. Yu, H. Gao, W. Wu, H.X. Ge, and S.Y. Chou, Fabri-
cation of large area subwavelength antireflection struc-
tures on Si using trilayer resist nanoimprint lithography
and liftoff, J Vac Sci Technol B 21 (2003), 2874-2877.
[52] K.S. Han, J.H. Shin, K.I. Kim, and H. Lee, Nanosized
structural anti-reflection layer for thin film solar cells,
Jpn J Appl Phys 50 (2011), 020207.
[53] A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz,
B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer,
Subwavelength-structured antireflective surfaces on
glass, Thin Solid Films 351 (1999), 73-78.
[54] K.M. Baker, Highly corrected close-packed microlens
arrays and moth-eye structuring on curved surfaces,
Appl Opt 38 (1999), 352-356.
[55] Q. Chen, G. Hubbard, P.A. Shields, C. Liu,
D.W.E. Allsopp, W.N. Wang, and S. Abbott, Broadband
moth-eye antireflection coatings fabricated by low-
cost nanoimprinting, Appl Phys Lett 94 (2009), 263118.
[56] Y. Kanamori, M. Sasaki, and K. Hane, Broadband
antireflection gratings fabricated upon silicon sub-
strates, Opt Lett 24 (1999), 1422-1424.
[57] N.H. Finkel, B.G. Prevo, O.D. Velev, and L. He,
Ordered silicon nanocavity arrays in surface-assisted
desorption/ionization mass spectrometry, Anal Chem
77 (2005), 1088-1095.
[58] D.G. Choi, H.K. Yu, S.G. Jang, and S.M. Yang, Colloi-
dal lithographic nanopatterning via reactive ion
etching, J Am Chem Soc 126 (2004), 7019-7025.
[59] C.L. Haynes and R.P. Van Duyne, Nanosphere lithog-
raphy: a versatile nanofabrication tool for studies of
size-dependent nanoparticle optics, J Phys Chem B 105
(2001), 5599-5611.
[60] F.C. Cebeci, Z.Z. Wu, L. Zhai, R.E. Cohen, and
M.F. Rubner, Nanoporosity-driven superhydrophilic-
ity: a means to create multifunctional antifogging coat-
ings, Langmuir 22 (2006), 2856-2862.
Search WWH ::




Custom Search