Biomedical Engineering Reference
In-Depth Information
[5] A. Luque and S. Hegedus, Handbook of photovoltaic
science and engineering , Wiley, Chicester, UK (2003).
[6] P. Doshi, G.E. Jellison, and A. Rohatgi, Characteriza-
tion and optimization of absorbing plasma-enhanced
chemical vapor deposited antireflection coatings for
silicon photovoltaics, Appl Opt 36 (1997), 7826-7837.
[7] R. Barrio, N. González, J. Cárabe, and J.J. Gandía, Opti-
misation of NaOH texturisation process of silicon
wafers for heterojunction solar-cells applications, Sol
Energy 86 (2012), 845-854.
[8] L. Forbes, Texturing, reflectivity, diffuse scattering and
light trapping in silicon solar cells, Sol Energy 86
(2012), 319-325.
[9] P.O. Caffrey, B.K. Nayak, and M.C. Gupta, Ultrafast
laser-induced microstructure/nanostructure replica-
tion and optical properties, Appl Opt 51 (2012),
604-609.
[10] W.T. Hsiao, S.F. Tseng, K.C. Huang, Y.H. Wang, and
M.F. Chen, Pulsed Nd:YAG laser treatment of
monocrystalline silicon substrate, Int J Adv Manufact
Technol 56 (2011), 223-231.
[11] V.V. Iyengar, B.K. Nayak, K.L. More, H.M. Meyer,
M.D. Biegalski, J.V. Li, and M.C. Gupta, Properties of
ultrafast laser textured silicon for photovoltaics, Sol
Energy Mater Sol Cells 95 (2011), 2745-2751.
[12] Z. Li, B.K. Nayak, V.V. Iyengar, D. McIntosh,
Q.G. Zhou, M.C. Gupta, and J.C. Campbell, Laser-
textured silicon photodiode with broadband spectral
response, Appl Opt 50 (2011), 2508-2511.
[13] D.A. Zuev, O.A. Novodvorsky, E.V. Khaydukov,
O.D. Khramova, A.A. Lotin, L.S. Parshina, V.V. Rocheva,
V.Y. Panchenko, V.V. Dvorkin, A.Y. Poroykov,
G.G. Untila, A.B. Chebotareva, T.N. Kost, and
M.A. Timofeyev, Fabrication of black multicrystalline
silicon surface by nanosecond laser ablation, Appl Phys
B 105 (2011), 545-550.
[14] J.H. Kim, S.M. Chun, and H.J. Lee, Study on the
plasma texturing for increasing the conversion effi-
ciency of a solar cell with a DC arc plasmatron, J Korean
Phys Soc 57 (2010), 1218-1223.
[15] K.S. Lee, M.H. Ha, J.H. Kim, and J.W. Jeong, Damage-
free reactive ion etch for high-efficiency large-area
multi-crystalline silicon solar cells, Sol Energy Mater
Sol Cells 95 (2011), 66-68.
[16] M. Moreno, D. Daineka, and P.R.I. Cabarrocas, Plasma
texturing for silicon solar cells: from pyramids to
inverted pyramids-like structures, Sol Energy Mater Sol
Cells 94 (2010), 733-737.
[17] J.M. Shim, H.W. Lee, K.Y. Cho, J.K. Seo, J.S. Kim,
E.J. Lee, J.Y. Choi, D.J. Oh, J.E. Shin, J.H. Kong,
S.H. Lee, and H.S. Lee, 17.6% conversion efficiency
multicrystalline silicon solar cells using the reactive
ion etching with the damage removal etching, Int J
Photoenergy (2012), 248182.
[18] J. Yoo, Reactive ion etching (RIE) technique for appli-
cation in crystalline silicon solar cells, Sol Energy 84
(2010), 730-734.
[19] J. Yoo, K. Kim, M. Thamilselvan, N. Lakshminarayan,
Y.K. Kim, J. Lee, K.J. Yoo, and J. Yi, RIE texturing opti-
mization for thin c-Si solar cells in SF(6)/O(2) plasma,
J Appl Phys D 41 (2008), 125205.
[20] J. Yoo, G. Yu, and J. Yi, Large-area multicrystalline
silicon solar cell fabrication using reactive ion etching
(RIE), Sol Energy Mater Sol Cells 95 (2011), 2-6.
[21] F. Chiadini, V. Fiumara, A. Scaglione, and A. Lakhta-
kia, Simulation and analysis of prismatic bioinspired
compound lenses for solar cells, Bioinsp Biomim 5
(2010), 026002.
[22] F. Chiadini, V. Fiumara, A. Scaglione, and A. Lakhta-
kia, Simulation and analysis of prismatic bioinspired
compound lenses for solar cells: II. Multifrequency
analysis, Bioinsp Biomim 6 (2011), 014002.
[23] B.S. Kim, D.H. Lee, S.H. Kim, G.H. An, K.J. Lee,
N.V. Myung, and Y.H. Choa, Silicon solar cell with
nanoporous structure formed on a textured surface,
J Am Chem Soc 92 (2009), 2415-2417.
[24] M. Malekmohammad, M. Soltanolkotabi, R. Asadi,
M.H. Naderi, A. Erfanian, M. Zahedinejad, S. Bagheri,
and M. Khaje, Combining micro- and nano-texture to
fabricate an antireflective layer, J Micro-Nanolith 11
(2012), 013011.
[25] N. Marrero, R. Guerrero-Lemus, B. Gonzalez-Diaz,
and D. Borchert, Effect of porous silicon stain etched
on large area alkaline textured crystalline silicon solar
cells, Thin Solid Films 517 (2009), 2648-2650.
[26] A. Ramizy, Z. Hassan, K. Omar, Y. Al-Douri, and
M.A. Mahdi, New optical features to enhance solar cell
performance based on porous silicon surfaces, Appl
Surf Sci 257 (2011), 6112-6117.
[27] X. Chen, Z.C. Fan, J. Zhang, G.F. Song, and L.H. Chen,
Pseudo-rhombus-shaped subwavelength crossed
gratings of GaAs for broadband antireflection, Chin
Phys Lett 27 (2010), 124210.
[28] K.Y. Lai, Y.R. Lin, H.P. Wang, and J.H. He, Synthesis of
anti-reflective and hydrophobic Si nanorod arrays by
colloidal lithography and reactive ion etching, Cryst
Eng Comm 13 (2011), 1014-1017.
[29] Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun,
J. Guo, and B. Yang, Bioinspired silicon hollow-tip
arrays for high performance broadband anti-reflective
and water-repellent coatings, J Mater Chem 19 (2009),
1806-1810.
[30] D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao,
Z. Wang, and L. Chi, Simple approach to wafer-scale
self-cleaning antireflective silicon surfaces, Langmuir
25 (2009), 7769-7772.
[31] Y.P. Liu, T. Lai, H.L. Li, Y. Wang, Z.X. Mei, H.L. Liang,
Z.L. Li, F.M. Zhang, W.J. Wang, A.Y. Kuznetsov, and
Search WWH ::




Custom Search