Biomedical Engineering Reference
In-Depth Information
[60] E.R. Ulrich and D.J. Pines, Effects of planform geometry
on mechanical samara autorotation efficiency and rota-
tional dynamics, J Am Helicopter Soc 57 (2012), 1-10.
[61] F. Bohorquez and D.J. Pines. Design and development
of a biomimetic device for micro air vehicles, Proc SPIE
4701 (2002), 503-517.
[62] K.D. Jones and M.F. Platzer, Flapping-wing propulsion
for a micro air vehicle, AIAA-2000-897, 38th aerospace
sciences meeting and exhibit , Reno, NV, USA (January
10-13, 2000).
[63] M.M. Heiligers, T. van Holten, and S.M. van den
Bulcke, Test results of a radio-controlled ornicopter: a
single rotor helicopter without reaction torque, AIAA-
2006-820, 44th AIAA aerospace sciences meeting and
exhibit , Reno, NV, USA (January 9-12, 2006).
[64] D.J. Gerwen, M.M. Heiligers, and T. van Holten,
Ornicopter yaw control: testing a single rotor helicopter
without reaction torq ue, AIAA-2007-1253, 45th AIAA
aerospace sciences meeting and exhibit , Reno, NV, USA
(8-11 January, 2007).
[65] B. Fitchett and I. Chopra, A biologically inspired flap-
ping rotor for micro air vehicles, Proceedings of the AHS
international specialists meeting on unmanned rotorcraft ,
Chandler, AZ, USA (January 23-25, 2007).
[66] F.K. Kirsten. Cycloidal propulsion applied to aircraft,
Trans ASME 50(AER-50-12) (1928).
[67] J. Wheatley, Simplified aerodynamic analysis of the
cyclogiro rotating-wing system, NACA-TN-467,
National Advisory Committee for Aeronautics (1930).
[68] J. Wheatley and R. Windler, Wind tunnel tests of a
cyclogiro rotor, NACA-TN-528, National Advisory
Committee for Aeronautics (1935).
[69] R. Gibbens, Improvements in airship control using verti-
cal axis propellers, AIAA-2003-6853, Proceedings of the
AIAA's 3rd annual aviation technology, integration, and
operations forum , Denver, CO, USA (November 17-19,
2003).
[70] M. Onda, K. Matsuuchi, N. Ohtsuka and Y. Kimura,
Cycloidal propeller and its application to advanced
LTA vehicles, AIAA-2003-6832, Proceedings of the AIAA
3rd annual aviation technology, integration, and operations
forum , Denver, CO, USA (November 17-19, 2003).
[71] R. P. Gibbens, J. Boschma and C. Sullivan, Construction
and testing of a new aircraft cycloidal propeller, AIAA-
1999-3906, Proceedings of the 13th AIAA lighter-than-air
systems technology conference , Norfolk, VA, USA (28
June-1 July, 1999).
[72] S. Kim, C. Yun, D. Kim, Y. Yoon, and I. Park, Design
and performance tests of cycloidal propulsion systems.
AIAA-2003-1786, Proceedings of the 44th AIAA/ASME/
ASCE/AHS structures , Structural dynamics, and materials
conference , Norfolk, VA, USA (April 7-10, 2003).
[73] C.Y. Yun, I. Park, H.Y. Lee, J.S. Jung, I.S. Hwang, S.J.
Kim, and S.N. Jung. A new VTOL UAV cyclocopter
with cycloidal blades system, Proceedings of the 60th
American Helicopter Society forum , Baltimore, MD, USA
(June 7-10, 2004).
[74] C.S. Hwang, I.S. Hwang, I.O. Jeong, S.J. Kim, C.H. Lee,
Y.H. Lee, and S.Y. Min, Design and testing of VTOL
UAV cyclocopter with 4 rotors, Proceedings of the 62nd
annual American Helicopter Society forum , Phoenix, AZ,
USA (2006).
[75] J. Sirohi, E. Parsons, and I. Chopra, Hover performance
of a cycloidal rotor for a micro air vehicle, J Am Heli-
copter Soc 52 (2007), 263-279.
[76] M. Benedict, M. Ramasamy, and I. Chopra, Improving
the aerodynamic performance of micro-air-vehicle-
scale cycloidal rotor: an experimental approach, J Air-
craft 47 (2010), 1117-1125.
[77] M. Benedict, M. Ramasamy, I. Chopra, and J.G. Leishman,
Performance of a cycloidal rotor concept for micro air
vehicle applications, J Am Helicopter Soc 55 (2010), 22002.
[78] M. Benedict, M. Mattaboni, I. Chopra, and P. Masarati,
Aeroelastic analysis of a micro-air-vehicle-scale cycloi-
dal rotor in hover, AIAA J 49 (2011), 2430-2443.
[79] M. Benedict, T. Jarugumilli, and I. Chopra, Experimen-
tal optimization of MAV-scale cycloidal rotor perfor-
mance, J Am Helicopter Soc 56 (2011), 22005.
[80] B. Roget, J. Sitaraman, R. Harmon, J. Grauer, J. Hubbard,
and S. Humbert, Computational study of flexible wing
ornithopter flight, J Aircraft 46 (2009), 2016-2031.
[81] R. Harmon, J. Grauer, J. Hubbard, J. Humbert, B. Roget,
J. Sitaraman, and J. Conroy, Experimental determina-
tion of ornithopter membrane wing shapes used for
simple aerodynamic modeling, AIAA-2008-6237, 26th
AIAA applied aerodynamics conference , Honolulu, HI,
USA (August 18-21, 2008).
[82] J.D. DeLaurier, An aerodynamic model for flapping-
wing flight, Aeronaut J 97 (1993), 125-130.
[83] J.D. DeLaurier, The development of an efficient orni-
thopter wing, Aeronaut J 97 (1993), 153-1530.
[84] C. Pennycuick, Wingbeat frequency of birds in steady
cruising flight: new data and improved predictions, J
Exp Biol 199 (1996), 1613-1618.
[85] R.F. Larijani and J.D. DeLaurier, A nonlinear aeroelastic
model for the study of flapping wing flight, Prog Astro-
naut Aeronaut 195 (2001), 399-428.
[86] J.A. Grauer and J.E. Hubbard, Multibody model of an
ornithopter, J Guid Control Dynam 32 (2009), 1675-1679.
[87] G.R. Spedding, J. McArthur, M. Rosen, and A. Heden-
strom, Deducing aerodynamic mechanisms from near-
and far-wake measurements of fixed and flapping
wings at moderate Reynolds number, AIAA-2006-33,
44th AIAA aerospace sciences meeting and exhibit , Reno,
NV, USA (January 9-12, 2006).
[88] T. Fritz and L. Long, Object-oriented unsteady vortex
lattice method for flapping flight, J Aircraft 41 (2004),
1275-1290.
Search WWH ::




Custom Search