Biomedical Engineering Reference
In-Depth Information
[28] J.G. Leishman, Principles of helicopter aerodynamics , Cam-
bridge University Press, New York, NY, USA (2000).
[29] M. Rosen and A. Hedenström, Gliding flight in a
jackdaw: a wind tunnel study, J Exp Biol 204 (2001),
1153-1166.
[30] R.A. Norberg, Hovering flight of the dragonfly Aeschna
Juncea L , in Kinematics and aerodynamics , vol. 2 (T.Y.-T.
Wu, C.J. Brokaw, and C. Brennen, eds.), Plenum, New
York, NY, USA (1975), 763-781.
[31] U.M. Norberg, Aerodynamics of hovering flight in the
long-eared bat Plecotus Auritus, J Exp Biol 65 (1976),
459-470.
[32] T. Weis-Fogh, Quick estimates of flight fitness in hover-
ing animals, including novel mechanisms for lift pro-
duction, J Exp Biol 59 (1973), 169-230.
[33] C.P. Ellington, C. van den Berg, A.P. Willmott, and
A.L.R. Thomas, Leading-edge vortices in insect flight,
Nature 384 (1996), 626-630.
[34] M.H. Dickinson, F.O. Lehmann, and S.P. Sane, Wing
rotation and the aerodynamic basis of insect flight,
Science 284 (1999), 1954-1960.
[35] L.W. Carr, K.W. McAlister, and W. J. McCroskey, Analysis
of the development of dynamic stall based on oscillating
airfoil experiments. NASA TN-D-8382, NASA (1977).
[36] S.P. Sane, The aerodynamics of insect flight, J Exp Biol
206 (2003), 4191-4208.
[37] C.P. Ellington, The novel aerodynamics of insect flight:
applications to micro-air vehicles, J Exp Biol 202 (1999),
3439-3448.
[38] A. Azuma, The biokinetics of flying and swimming ,
Springer-Verlag, Tokyo, Japan (1992).
[39] Y.C. Fung, An introduction to the theory of aeroelasticity ,
Wiley, New York, NY, USA (1955).
[40] R.L. Bisplinghoff, H. Ashley, and R.L. Halfman, Aero-
elasticity , Addison-Wesley, Cambridge, MA, USA (1957).
[41] G.K. Taylor, R.L. Nudds, and A.L.R. Thomas, Flying and
swimming animals cruise at a Strouhal number tuned
for high power efficiency, Nature 425 (2003), 707-711.
[42] C.J Pennycuick, Animal flight, , Arnold, London, UK
(1972).
[43] U.M. Norberg, Vertebrate flight, , Springer-Verlag, Berlin,
Germany (1990).
[44] J. Rayner, Mathematical modelling of the avian flight
power curve, Math Method Appl Sci
Aerodynamics for micro air vehicle applications (T.J. Mueller,
ed.), AIAA, Reston, VA, USA (2001), 231-248.
[48] J. Sirohi, M. Tishchenko, and I. Chopra, Design and
testing of a microaerial vehicle with a single rotor and
turning vanes, Proceedings of the 61st annual American Heli-
copter Society forum , Grapevine, TX, USA (June 1-3, 2005).
[49] F. Bohorquez and D. Pines, Hover performance and
swashplate design of a coaxial rotary wing micro air
vehicle, Proceedings of the 60th annual American Helicop-
ter Society forum , Baltimore, MD, USA (2004).
[50] T. Pornsin-Sisirak, S.W. Lee, H. Nassef, J. Grasmeyer,
Y.C. Tai, C.M. Ho, and M. Keennon, MEMS wing tech-
nology for a battery-powered ornithopter, Thirteenth
IEEE International conference on micro electro mechanical
systems , vol. 122, Miyazaki, Japan, USA (2000), 23-27.
[51] M. Keennon, K. Klingebiel, and H. Won, Development
of the nano hummingbird: a tailless flapping wing micro
air vehicle, AIAA 2012-588, 50th AIAA Aerospace Sciences
Meeting including the new horizons forum and aerospace
exposition , Nashville, TN, USA (January 9-12, 2012).
[52] G.C.H.E. de Croon, K.M.E. de Clerq, R. Ruijsink, B.
Remes, and C. de Wagter, Design, aerodynamics, and
vision-based control of the Delfly, Internat J Micro Air
Vehicles 1 (2009), 71-97.
[53] E. Steltz, S. Avadhanula, and R.S. Fearing, High lift
force with 275 Hz wing beat in MFI, IROS 2007, IEEE/
RSJ International conference on intelligent robots and
systems , (IEEE, 2007), 3987-3992.
[54] A. Cox, D. Monopoli, D. Cveticanin, M. Goldfarb, and
E. Garcia, The development of elastodynamic compo-
nents for piezoelectrically actuated flapping micro-air
vehicles, J Intell Mater Syst Struct 13 (2002), 611-615.
[55] R. Kline and W. Koenig, Samara type decelerators, 8th
aerodynamic decelerator and balloon technology conference ,
Hyannis, MA April 2-4, Technical Papers (A84-26551
11-03), number AIAA-1984-807, pages 135141. Ameri-
can Institute of Aeronautics and Astronautics, New
York, NY, USA (1984).
[56] K. Fregene and C.L. Bolden, Dynamics and control of
a biomimetic single-wing nano air vehicle, IEEE Ameri-
can Control Conference (ACC) 2010 (2010), 51-56.
[57] S. Jameson, K. Fregene, M. Chang, N. Allen, H. Youn-
gren, and J. Scroggins, Lockheed Martin's SAMARAI
nano air vehicle: challenges, research, and realization,
AIAA-2012-584, 50th AIAA Aerospace Sciences Meeting
including the new horizons forum and aerospace exposition ,
Nashville, TN, USA (January 9-12, 2012).
[58] E.R. Ulrich, D.J. Pines, and S. Gerardi, Autonomous
flight of a samara MAV, American Helicopter Society 65th
annual forum and technology display , Grapevine, TX, USA
(May 2009), 27-29.
[59] E.R. Ulrich, D.J. Pines, and J.S. Humbert, From falling
to flying: the path to powered flight of a robotic samara
nano air vehicle, Bioinsp Biomim 5 (2010), 045009.
24 (2001),
1485-1514.
[45] D.J. Pines and F. Bohorquez, Challenges facing future
micro-air-vehicle development, J Aircraft 43 (2006),
290-305.
[46] K.C. Hall and S.R. Hall, A rational engineering analysis of
the efficiency of flapping flight, in Fixed and flapping wing
aerodynamics for micro air vehicle applications, (T.J. Mueller,
ed.), AIAA, Reston, VA, USA (2001), 249-274.
[47] C.P. Ellington and J.R. Usherwood, Lift and drag character-
istics of rotary and flapping wings, in Fixed and flapping wing
Search WWH ::




Custom Search