Agriculture Reference
In-Depth Information
fraction in root tips of soybean under flooding stress using
proteomics techniques. J Proteomics 77: 531-560.
Koornneef M, Meinke D (2010) The development of Arabidopsis
as a model plant. Plant J 61: 909-921.
Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome
changes under abiotic stress - contribution of proteomics
studies to understanding plant stress response. J Proteomics
74: 1301-1322.
Kumar K, Kumar M, Kim SR, Ryu H, Cho YG (2013) Insights
into genomics of salt stress response in rice. Rice 6: 27.
Kuromori T, Miyaji T, Yabuuchi H, et al. (2010) ABC transporter
AtABCG25 is involved in abscisic acid transport and
responses. Proc Natl Acad Sci USA 107: 2361-2366.
Lamb MC, Davidson J I, Childre JW, Martin NR (1997)
Comparison of peanut yield, quality, and net returns bet-
ween non irrigated and irrigated production. Peanut Sci 24:
97-101.
Langridge P, Fleury D (2011) Making the most of 'omics' for
crop breeding. Trends Biotechnol 29: 33-40.
Lee J, Lei Z, Watson BS, Sumner LW (2013) Subcellular pro-
teomics of Medicago truncatula . Front Plant Sci 4: 112-131.
Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005)
Soybean DRE-binding transcription factors that are respon-
sive to abiotic stresses. Theor Appl Genet 110: 1355-1362.
Mantri N, Basker N, Ford R, Pang E, Pardeshi V (2013) The
role of micro-ribonucleic acids in legumes with a focus on
abiotic  stress response. Plant Genome 6(3); doi: 10.3835/
plantgenome2013.05.0013.
Marko NF (2013) Introduction to the Genomics special
edition on clinical and translational genomics. Genomics 102:
73-73.
Memon AR (2012) Transcriptomics and proteomics analysis of
root nodules of model legume plants. In: Ashraf M, Ozturk
M, Ahmed MSA, Aksoy A (eds), Crop Production for Agricultural
Improvement . Springer, pp. 291-315.
Molina C, Rotter B, Horres R, et al. (2008) SuperSAGE: the
drought stress-responsive transcriptome of chickpea roots.
BMC Genomics 9: 553.
Nakashima K, Jan A, Todaka D, et al. (2014) Comparative
functional analysis of six drought-responsive promoters in
transgenic rice. Planta 239: 47-60.
Ohtsu K, Smith MB, Emrich SJ, et al. (2007) Global gene
expression analysis of the shoot apical meristem of maize
( Zea mays L.). Plant J 52: 391-404.
Ohyanagi H, Sakata K, Komatsu S (2012) Soybean Proteome
Database 2012: update on the comprehensive data repository
for soybean proteomics. Front Plant Sci 3: 110.
Olivares J, Soto MJ, Arrese-Igor C, et al. (2011) Nitrogen fixa-
tion in legumes. In: Perez de la Vega M, Torres AM, Cubero
JI, Kole C (eds), Genetics, Genomics and Breeding of Cool Season
Grain Legumes . Science Publishers, pp. 355-379.
Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012)
Mitogen-activated protein (MAP) kinases in plant metal
stress: Regulation and responses in comparison to other
biotic and abiotic stresses. Int J Mol Sci 13: 7828-7853.
Palovaara J, Saiga S, Weijers D (2013) Transcriptomics
approaches in the early Arabidopsis embryo. Trends Plant Sci
18: 514-521.
Pal'ove-Balang P, Betti M, Díaz P, et al. (2013) Abiotic stress in
Lotus: aluminum and drought. In: Gaur RK, Sharma P (eds),
Molecular Approaches in Plant Abiotic Stress . CRC Press, Boca
Raton, pp. 284-303.
Pandey A, Chakraborty S, Datta A, Chakraborty N (2008)
Proteomics approach to identify dehydration responsive nuclear
proteins from chickpea ( Cicer arietinum L.). Mol Cell Proteomics 7:
88-107.
Pinto HS, de Avila AMH, Cardoso AO (2013) Challenges
to increased soybean production in Brazil. In: Board JE (ed.),
A Comprehensive Survey of Soybean Research - Genetics,
Physiology, Agronomy and Nitrogen Relationships . InTech,
Croatia, pp. 199-208.
Poltronieri P, Bonsegna S, De Domenico S, Santino A (2011).
Molecular mechanisms in plant abiotic stress response. Ratar
Povrt/Field Veg Crop Res 48: 15-24.
Pratap A, Choudhary AK, Kumar J (2010) In vitro techniques
towards genetic enhancement of food legumes - A review. J
Food Legume 23: 169-185.
Qin H, Gu Q, Kuppu S, et al. (2013) Expression of the Arabidopsis
vacuolar H + -pyrophosphatase gene AVP1 in peanut to
improve drought and salt tolerance. Plant Biotechnol Rep 7:
345-355.
Quadrana L, Rodriguez MC, López M, et al. (2011) Coupling
virus-induced gene silencing to exogenous green fluores-
cence protein expression provides a highly efficient system
for functional genomics in Arabidopsis and across all stages of
tomato fruit development. Plant Physiol 156: 1278-1291.
Ramanjulu S, Bartels D (2002) Drought and desiccation-
induced modulation of gene expression in plants. Plant Cell
Environ 25: 141-151.
Reddy DS, Bhatnagar-Mathur P, Vadez V, Sharma KK (2012)
Grain legumes (soybean, chickpea, and peanut): Omics
approaches to enhance abiotic stress tolerance. In: Tuteja N,
Gill SS, Tiburcio AF, Tuteja R (eds), Improving Crop Resistance to
Abiotic Stress . Wiley-VCH Verlag, Singapore, pp. 995-1032.
Rolla AAP, Carvalho JFC, Fuganti-Pagliarini R, et al. (2013)
Phenotyping soybean plants transformed with rd29A:
AtDREB1A for drought tolerance in the greenhouse and
field. Transgenic Res 23: 75-87.
Russelle MP (2008) Biological dinitrogen fixation in agricul-
ture. In: Schepers JS, Raun WR (eds), Nitrogen in Agricultural
Systems . American Society of Agronomy, pp. 281-359.
Sanchez DH, Shwabe F, Erban A, Udvardi MK, Kopka J (2012)
Comparative metabolomics of drought acclimation in model
and forage legumes. Plant Cell Environ 35: 136-149.
Saxena NP, Krishnamurthy L, Johansen C (2002) Genetic
improvement of drought in chickpea. In: Saxena NP, Toole
JCO (eds), Field Screening for Drought Tolerance in Crop Plants
with Emphasis on Rice: International Workshop on Field Screening
for Drought Tolerance in Rice. ICRISAT, Patancheru, India,
pp. 128-137.
Search WWH ::




Custom Search